
STA457S 2023 Summer

Anton S.

• Professor: Esam Mahdi, e.mahdi@mail.utoronto.ca

• Lectures: MW 6-9 BA1160

Contents

1 Introduction 3
Box-Jenkins Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Financial Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Characteristics of Time Series 5
Stationary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Vector Valued Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Time Series Regression and Exploratory Data Analysis 9
Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Hypothesis Testing and Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Transformations to Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Filtering and Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 ARIMA Models 13
Auto-Regressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Causal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Moving Average Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Auto-Regressive Moving Average Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 ARIMA Models Continued 18
The ACF of an Autoregressive Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Partial Autocorrelation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Autocorrelation of a Moving Average Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Summary for Model Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Time Series Diagnostics 24
Test Statistics for Time Series Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 ARMA Forecasting 28

1



CONTENTS 2

8 Estimation 29
Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Maximum Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Asymptotics of some distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Test statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Regression Continued 32
Autocorrelated errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Detecting Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Seasonal ARIMA Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10 Additional Topics 35
Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Long Memory and Fractional Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



1 INTRODUCTION 3

1. Introduction
Time series can be defined as a collection of random variables indexed according to the order they are
obtained in time. We can consider time series as a sequence of random variables

x1, x2, . . . , xt, . . .

where xt is obtained at t-th time point. In this course, the indexing variable t will typically be discrete
and not continuous. I.e. t ∈ N or t ∈ Z. A time series is a series of observed values (xt), we call the
unrealized model a process in this course.

Definition 1.0.1. A series is stationary if it remains around a mean value over time.

Examples: Daily temperature, stock prices, generally measurements

Box-Jenkins Methodology
1. Identification: Examine graphs and identify patterns and dependency in an observed time series.

We look for: trend, periodic trend, outliers, irregular change

2. Estimation: Select a suitable fitted model for predicting future values.

3. Diagnostic checking: Goodness of fit tests and residual scores to estimate adequacy of the model,
determine unaccounted for patterns.

4. Forecasting: Use model to forecast the future values.

We say forecasting instead of prediction to indicate foretelling closely into the future.

Financial Time Series
We motivate a lot of this course with financial data, so we define terminology for financial time series.

Definition 1.0.2. The net return from the holding period t− 1 to t is

Rt =
xt − xt−1

xt−1
=

xt

xt−1
− 1

i.e. relative percent increase of (xk) from t− 1 to t.

Definition 1.0.3. The simple gross return from the holding period t− 1 to t is
xt

xt−1
= 1 + Rt

Definition 1.0.4. The gross return over the most recent k periods is defined as

1 + Rt(k) =
xt

xt−k

=

i=k∏
i=0

xt−i

xt−i−1
= (1 + Rt) . . . (1 + Rt−k)

Definition 1.0.5. The log returns or continuously compounded returns are denoted rt and defined as

rt = log(1 + Rt) = log(xt) − log(xt−1)
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Returns are scale-free but not unitless since they depend on t.

Definition 1.0.6. The volatility is the conditional standard deviation of underlying asset return.

In most financial time series data, the scale of the volatility appears to be the same. Highly volatile periods
tend to be clustered together.

We may decompose a financial time series as

xt = Tt︸︷︷︸
trend

+ st︸︷︷︸
season

+ ct︸︷︷︸
cycle

+ It︸︷︷︸
irregularity

If these components are corelated, use a multiplicative decomposition xt = TtstctIt. If only some are
corelated, use a mixed model, i.e. xt = stTt + ct + It.

Time Series Models
Definition 1.0.7 (Moving average). The k-th (odd) moving average of a time series (xt) is defined as the
sum of the k values of the time series around xt. For example, the third moving average series for (xt) is

yt =
1
3
(xt−1 + xt + xt+1)

If k is even, we reindex and define the time of the moving average to be at the middle of the times we
evaluate. For example the 4-th moving average of (xt) is

yt =
1
4
(xt−2 + xt−1 + xt+1 + xt+2)

Moving averages allow us to ‘smooth’ a time series by reducing the noise while maintaining the trend in
the series.

Definition 1.0.8 (White noise). A white noise process is a collection of uncorrelated and identically dis-
tributed random variables (wt), each with 0 mean and finite variance σ2

w for every t. If the white noise
follows a normal distribution, i.e.

wt ∼ N(0,σ2
w)

then it is Gaussian white noise. In the Gaussian case, independent and uncorrelated are the same, so wt

are i.i.d.

Definition 1.0.9 (Random walk). A random walk with drift (xt) is a series

xt = δ+ xt−1 +wt

where wt ∼ wn(0,σ2). For t ⩾ 1, δ is the drift. When δ = 0, the series is simply a random walk:

xt = xt−1 +wt

The series is the same as in the previous time step plus a white noise shock. Therefore we may write

xt = δt+

t∑
j=1

wj, t ⩾ 1

If δ ̸= 0, the series is not stationary.
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Definition 1.0.10 (Signal in noise). Many realistic models for generating time series assume an underlying
sinusoidal signal:

xt = A sin(ωt+ ϕ) +ωt

As a general note, the goal of time series analysis is to apply a series of transformations in order to reduce
the remaining model to a white noise series. Through these transformations we address trends in the series,
aiming to be left with only a noise series.

2. Characteristics of Time Series
A complete description of time series is provided by the joint distribution function.

Definition 2.0.1. The mean function is defined as

µt = E(xt) =

∫∞
−∞ xft(x)dx

µt is the expectation of the process at the given t, ft is probability density of xt.

Definition 2.0.2. The autocovariance function is defined as the second moment product

γx(s, t) = Cov(xs, xt) = E[(xs − µs)(xt − µt)]

for all s, t. Note γx(t, t) = Var(xt).

Covariance measures the ‘linear relationship’ of random variables (it is an inner product on the space). The
following examples can be computed with the bilinearity properties of covariance.

Example 1. Consider white noise wt ∼ wn(0,σ2). Then we have

γw(s, t) = Cov(ws,wt) =

{
σ2, s = t

0, s ̸= t

Example 2. Consider moving average vt = 1
3(wt+1 + wt + wt−1) with wt ∼ wn(0,σ2). Then we can

verify that

γv(s, t) =


1
3σ

2, s = t
2
9σ

2, |s− t| = 1
1
9σ

2, |s− t| = 2
0, |s− t| > 2

Note: Prof said this is a great exam question!

Example 3. For a random walk without drift, xt =
∑t

j=1wj and wt ∼ wn(0,σ2), we have

γx(s, t) = min{s, t}σ2

since the wt are uncorrelated random variables. Note Var(xt) = tσ2.

Definition 2.0.3. The autocorrelation function is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
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The autocorrelation function gives a profile of the linear correlation of the series at time t. Cauchy Schwarz
implies |γ(s, t)|2 ⩽ γ(s, s)γ(t, t).

Definition 2.0.4. For multivariate time series we have the cross-variance function

γxy(s, t) = Cov(xs,yt)

and cross-correlation function

ρxy(s, t) =
√
γxy(s, t)√

γx(s, s)
√
γy(t, t)

This can be extended to time series with arbitrary components.

Stationary Models
Definition 2.0.5. A stationary process xt has constant mean and variance for all t.

Stationarity is defined uniquely, so there is only one way for a series to be stationary. It is preferred that
estimators of parameters do not changed over time. In many cases, stationary data can be approximated
with stationary ARMA models which we discuss later. They also avoid the problem of spurious regression.

Definition 2.0.6. A series xt is strong stationary if for any t1, t2, . . . , tn ∈ Z where n ⩾ 1 and any scalar
shift h ∈ Z, the joint distribution of both series is the same:

P(xt1 ⩽ c1, · · · , xtn ⩽ cn) = P(xt1+h ⩽ c1, · · · , xtn+h ⩽ cn)

We never actually know the joint distribution, but this definition allows us to make some theoretical obser-
vations about time series. The above implies

1. p(xt ⩽ c) = p(xt+h ⩽ c)

2. µt = µs for all s, t

3. γ(s, t) = γ(s+ h, t+ h)

It cannot be checked whether any observed time series is strong stationary. This motivates weak stationary.

Definition 2.0.7. A process is time invariant if it does not depend on time.

Definition 2.0.8. A time series is weak stationary invariant, covariance stationary, second-order sta-
tionary if

1. µt is constant

2. γ(s, t) = Cov(xs, xt) depends on s, t only by the difference |s− t|: γ(t+ h, t) = γ(h, 0).

Proposition 1. A strong stationary series is weakly stationary. The converse is not true.

Definition 2.0.9. The autocovariance function of a stationary time series will be written as

γ(h, 0) = γ(h) = Cov(xt+h, xt)

Note γ(h) = γ(−h).
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Definition 2.0.10. The autocorrelation function of a stationary time series will be written as

ρ(h) =
γ(t+ h, t)√

γ(t+ h, t+ h)
√
γ(t, t)

=
γ(h)

γ(0)

Definition 2.0.11. The stochastic processwt is a strong white noise process with mean zero and variance
σ2
w and written wt ∼ wn(0,σ2

w) if and only if it is i.i.d. with zero mean and covariance

γw(h) = E(wtwt+h) =

{
σ2
w, h = 0

0, h ̸= 0

A weak stationary Gaussian white noise process is strongly stationary, due to uncorrelated implying inde-
pendent in this case.
Example 4. Consider moving average vt = 1

3(wt+1 +wt +wt−1) with wt ∼ wn(0,σ2). It is stationary
since µv,t = 0.

γv(h) =


1
3σ

2, h = 0
2
9σ

2, h = 1
1
9σ

2, h = 2
0, h > 2

ρv(h) =


1 h = 0
2
3 h = 1
1
3 h = 2
0, h > 2

Example 5. xt = εt where εt ∼ i.i.d(0, 1) is weakly stationary.
Example 6. xt = t+ εt where εt ∼ i.i.d(0, 1) is not weakly stationary since µt depends on t.
Example 7. Suppose Xt = A sin(t+B) where A ∼ r.v.(0, 1),B ∼ U([−π,π]). This process is stationary.

E(Xt) = E(A sin(t+ B)) = E(A)E(sin(t+ B)) = 0

γ(h) =
1
2

cos(h)

γ(h) can be verified by integrating.

Transforming Nonstationary Series

The random walk process xt = δt+
∑t

j=1wj is not stationary if it has drift, since E(xt) = δt depends on
time. Suppose δ = 0 so the mean function is constant. In this case

γ(h) = Cov(xt, xt+h) = tσ
2 and ρ(h) =

Cov(xt, xt+h)√
Var(xt)Var(xt+h)

=
1√

1 + h/t

For large t and h much smaller than t, get γ(h) is very close to 1. We can eliminate the stationarity in a
random walk process by taking the difference of the xt:

∇xt = xt − xt−1 = εt ∼ wn(0,σ2
w)

In the presence of d unit rots, we apply d differences to xt:

∇dxt = (1 − B)dxt = εt

Where B is the backwards shift Bxt = xt−1. For example, consider xt = a+ bt+ ct2. Then we may take
second order differences:

zt = ∇2xt = (xt − xt−1) − (xt−1 − xt−2) = 2c

for t ⩾ 3. The R function diff(x, lag, differences) can be used for this. The series ∇xt can be
used to transform the time series into stationarity.
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Definition 2.0.12. A series is jointly stationary if they are each stationary and

γxy(h) = Cov(xt+h,yt) = E(xt+h − µx)(yt − µy)

is only a function of the lag. The cross correlation function of two jointly stationary series is

ρxy(h) =
γxy(h)√
γx(0)γy(0)

We again have −1 ⩽ ρxy(h) ⩽ 1.

Example 8. Consider two series xt = wt +wt−1 and yt = wt −wt−1. We find the cross correlation

Definition 2.0.13. A linear process xt is defined to be a linear combination

xt = µ+

∞∑
j=−∞ψjwj,

∞∑
j=−∞ |ψj| <∞

We may verify γx(h) =
∑∞

j=−∞ψt+hψt. Only need
∑∞

j=−∞ψ2
j <∞ for process to have finite variance.

Note that the moving average is an example of a linear process.

If a time series is stationary, we may estimate the mean with x = 1
n

∑n
t=1 xt. In this case,

Var(x) =
σ2
x

n

(
1 +

n−1∑
h=1

(1 − h/n)ρ(h)

)

Estimators

Definition 2.0.14. The sample autocovariance is defined as

γ̂(h) =
1
n

n−h∑
t=1

(xt+h − x)(xt − x)

The sum is restricted since xt+h is not available for t + h > n. This estimator is preferred than the one
dividing by n− h since it is a non-negative definite function. The sample autocorrelation is defined as

ρ̂(0) =
γ̂(h)

γ̂(0)
=

∑n−h
t=1 (xt+h − x)(xt − x)∑n

t=1(xt − x)
2

This allows us to test whether the autocorrelation is statistically significant at some lags: for n sufficiently
large, approximately we have ρ̂(h) ∼ N(0, 1

n
). I.e. the estimator is normally distributed with

µρ̂(h) = 0 and σρ̂(h) =
1√
n

We can test H0 : ρ(h) = 0, Ha : ρ(h) ̸= 0. For α = 0.05, have |ρ̂(h)| ⩾ 2√
n

.

• The ACF cuts off at lag h if there no spikes at lags > h in the ACF plot.

• The ACF dies down if it decreases in a steady fashion.

• If ACF dies down quickly, then the data is stationary. If it dies down very slowly, it is not stationary.
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Vector Valued Time Series
Same as regular time series, except

xt = (xt,1, . . . , xt,p) ∈ Rp

The transpose is denoted xt. The mean is µt = E(xt) = (µt,1, . . . ,µt,p). If the process is stationary,
E(xt) = µ, and has autocovariance matrix

Γ(h) = E(xt+h − µ)(xt − µ)
′

with cross covariance functions γij(h) = E(xt+h,i − µi)(xt,j − µj). Note γij(h) = γji(−h).

Definition 2.0.15. The sample autocovariance matrix

Γ̂(h) =
1
n

n−h∑
t=1

(xt+h − x)(xt − x)
′

where x = 1
n

∑n
t=1 xt. The symmetry property holds: Γ̂(h) = Γ̂(−h) ′.

3. Time Series Regression and Exploratory Data Analysis
We develop regression models in univariate and multiple time series analyis. We calculate least squares
estimators of regression parameters, do ANOVA, and assess our parameters. Then we perform lagged re-
gression, and do transformations of time series to stationarity.

The multiple linear regression model relates the response x to independent variables zi with the relationship

x = β0 + β1z1 + . . . + βqzq + ε

where ε is some error term. We model

E(x | z1, . . . , zq) = β0 + β1z1 + . . . + βqzq

The linear model is linear in the coefficients β1, not in zi.

Definition 3.0.1. The multiple linear regression model in time series is modelled with

xt = β0 + βt,1 + . . . + βqzt,q +wt

1. xt is the dependent time series

2. zt,1, . . . , zt,q are independent series.

3. wt for different t are iid, wn(0,σ2
w). Note this is stronger than the usual assumption.

We collect n > q observations of the time series, at various time points and predict x̂t = β̂0 + β̂1zt1 +
. . . β̂qztq. We describe xt as a linear combination of the other time series. We minimize the error via least
squares:

Q(β0, . . . ,βq) =

n∑
t=1

w2
t =

n∑
t=1

(xt − x̂t)
2



3 TIME SERIES REGRESSION AND EXPLORATORY DATA ANALYSIS 10

Then differentiate and minimize by setting

∂Q

∂βi

∣∣∣
β0,...,βq

= 0

When q = 1,

β̂1 =

∑n
i=1(xt − x)(zt − z)∑n

i=1(zt − z)
2 , β̂0 = x− β̂zz

Exam: Should be on reference sheet.

Matrix Form
We can write the multiple linear regression model in terms of vector valued time series/matrix form. Con-
sider zt ∈ Rq with component-wise independent time series zt,i. Each zt can be seen as a column vector
of z. Then for the model

xt = β
′zt +wt wt ∼ iid(0,σ2

w)

the least squares estimate is given by

β̂ = (z ′z)−1z ′x =

(
n∑

t=1

ztz
′
t

)−1 n∑
t=1

ztxt

The minimized sum squared errors can be written

SSE =

n∑
t=1

(xt − β̂
′zt)

2

The covariance matrix is given by

Cov(β̂) = σ2
wC, C = (zz ′)−1

i.e. the exterior product. The mean squared error is

MSE = s2
w =

SSE

n− (q+ 1)

which is an unbiased estimator for σ2
w.

Hypothesis Testing and Model Selection
We may test the hypothesis βi = 0 for i > 0 with the test statistic

t =
β̂iβi

sw
√
ci,i

∼ tn−(q+1)

where ci,i is the i-th diagonal element of the covariance matrix C. We can also test whether a subset of zi
influences xt. The reduced model is

xt = β0 + β1zt1 + . . . + βr + ztr +wt
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where β0, . . . ,βr are a subset of the original coefficients. Our null hypothesis is βr+1 = · · · = βq = 0.
We are testing whether the SSE deviates statistically significantly once we reduce the model, since it will
always reduce somewhat. Our null is that the subset model is correct, since we prefer more parsimonious
models.

F =
(SSER − SSE)/(q− r)

SSE/(n− q− 1)
=
MSR

MSE
∼ Fq−r,n−q−1

Note: n − q − 1 − (n − r − 1) = q − r which gives the above degrees of freedom. Reject the more
parsimonious model at level α in favor of Ha if F ⩾ Fα.

Sources of Variation Df Sum Sq Mean Sq F value Pr(>F)
zt;r+1;q q− r SSR MSR = SSR

q−r
F0 =

MSR
MSE

etc
Error n− q− 1 SSE MSE = SSE

n−q−1
Total n− r− 1 SSE0

• The sum of squares contributed by regression (explained variation): SSR =
∑n

t=1(x̂t − x)
2.

• The sum of squares contributed by error (unexplained variation): SSE =
∑n

t=1(x̂t − x̂t)
2.

• The total sum squared is SSE0 = SSR+ SSE.

• The coefficient of determination is the proportion of total explained variation is

R2 = SSR/SSE0 = 1 − SSE/SSE0

.

In order to compare models we also consider the adjusted R2, which account for the number of predictors.

R2
a =

(
R−

q

n− 1

)(
n− 1

n− q− 1

)
For a model with k + 1 parameters, the least squares estimator of the variance is σ̂2

k = SSE(k)/n, where
SSE(k) comes from the model without intercept. Frequently we use information criteria to select the best
model with k predictors

• AIC = n log σ̂2
k + 2(k+ 2)

• AICC = AIC+ 2(k+2)(k+3)
n−k−3

• BIC = log σ̂2
k + (k+ 2) logn

We prefer models with minimal information criteria.
Example 9. Consider a time seriesMt which is modelled as depending on other series Tt,Pt.

• Trend-only: Mt = β0 + β1t+wt

• Linear: Mt = β0 + β1t++β1Tt +wt orMt = β0 + β1t++β1Pt +wt etc.

• Curvilinear: Mt = β0 + β1t++β1(Tt − T)
2 + β2Pt +wt

The model simultaneously minimizing AIC and BIC is best. Note that the quadratic term in the curvilinear
model is centered, probably to account for average temperature in β0. Given observations for these models,
we perform F-test to see whether we can drop some predictors.
When dealing with temporal data, we also need to consider lagged variables. This predicts values of xt
from possible lags in zt. Lagged regression can be done using dynlm in R.
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Transformations to Stationarity
In order to satisfy many of our assumptions, it is necessary for a series to be stationary. This is often not the
case and we often want to transform our data. To remove any change in the mean function µt, we detrend
the model by decomposing it into

xt = µt + yt

where µt is a fitted mean function, yt is the residual series. Our assumption about errors is that they follows
iid(0,σ2), which makes yt stationary.

The backshift, forward, and difference operators act on time series by

• Backshift: Bh(xt) = xt−h

• Forward: B−h(xt) = xt+h

• Difference: ∇h(xt) = (1 − B)h(xt)

Often taking the first difference is more effective than detrending in order to make the series stationary.
ACF plots end up much better.

Example 10. Suppose that after differencing, the ACF plot had a significant value at h = 4. Then we
model

Xt = θXt−4 +wt

We see later that this is a “MA(4) = ARMA(0, 4)” model.

When a model has drift, for example Xt = δ+Xt−1+wt, then differencing makes complete sense in order
to get a stationary series.

Fractional differencing extends the notion of the difference operator ∇d = (1−B)d to fractional powers
of d ∈

(
− 1

2 , 1
2

)
which still define stationary processes, especially for long memory time series.

A method to suppress large fluctuations of xt is through the Box-Cox transformations:

yt =

{
xλ
t−1
λ

, λ ̸= 0
log xt, λ = 0

which is a method of selecting the best non-linear transformation of xt in order to minimize the variance
of the errors.

Harmonic regression is used when a model contrains a periodic trend, allowing us to use trigonometric
functions of t to do detrending.

xt = β0 + β1t+ β2 sin
(

2πt
L

)
+ β3 cos

(
2πt
L

)
+wt

Adding trigonometric terms with different frequencies can help with complex seasonality patterns.
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Filtering and Smoothing
Filtering/smoothing helps discover useful trends and seasonal components.

Definition 3.0.2. The moving average smoother is

mt =

k∑
j=−k

ajxt−j

where
∑j

j=−k aj = 1,aj > 0 makes a symmetric weighted moving average.

Definition 3.0.3. The kernel smoothing is

mt =

n∑
i=1

wi(t)xi

where wi = K(
t−i
b
)/

∑n
j=1 K(

j−i
b
) are weights, K is some kernel function. The wider the bandwidth b,

the smoother the model.

4. ARIMA Models
We move into the core of time series analysis. ARMA models are defined, autocorrelation functions are
derived, and stationarity, causality, and invertibility of series are evaluated. The Box-Jenkins methodology
requires that the model used in describing and forecasting a series is stationary and invertible

Definition 4.0.1. xt is stationary if it remains in statistical equilibrium with properties that do not change
over time. xt is invertible if its weights do not depend on time, and xt can be expressed as a function of
previous observations xt−1, . . ..

Definition 4.0.2. The partial correlation at lag k of xt is

Corr(xt+k − x̂t+k, xt − x̂t)

where x̂t+k = β1xt+k−1 + βk−1zt+1 and x̂t = β1xt+1 + βk−1zt+k−1. Note coefficients are same but
reversed. The partial autocorrelation allows us to detect whether a dependence at lag k is appropriate, and
is part of the Box-Jenkins methodology.

Auto-Regressive Models
Once trends and seasonal effects are removed from a model, we might construct a linear model for a series
with autocorrelation.

Definition 4.0.3. A time series xt with zero mean is autoregressive process of order p, denoted AR(p)
if it can be written

xt = ϕ1xt−1 + ϕ2xt−2 + . . .ϕpxt−p +wt

for ϕp ̸= 0, wt ∼ wn(0,σ2
w). With backshift operator, we can write this as a polynomial of order p in B,

Φp(B)xt = wt

andΦp(B) = 1−ϕ1B−ϕ2B
2 − . . .−ϕpB

p, ϕp ̸= 0. This is the characteristic polynomial of order p.
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The second expresssion in terms of characteristic polynomial is preferred, we will see it simplifies our
understanding later. If the mean µ of xt, we may replace xt by xt − µ, and rewrite as

xt = δ+ ϕ1xt−1 + ϕ2xt−2 + . . .ϕpxt−p +wt

with δ = µ(1 − ϕ1 − ϕ2 − · · ·− ϕp).

Example 11. The AR(2) model xt = 1.5 + 1.2xt−1 − 0.5xt−2 +wt is

xt − µ = 1.2(xt − µ) − 0.5(xt − µ) +wt

Solving for µ with 1.5 = µ(1 − 1.2 − 0.5), we see µ = 5.

Suppose we fit an AR(h) model. In order to decide whether the fit model is a good fit, we check:

• The plot of the time series does not show any increase in variance or trend.

• The ACF plot must decay exponentially, have a wavelet form, or be oscillating (i.e. sign alternates)
about 0.

• The PACF plot can be used to detect the correct order for the autoregressive model.

Causal Conditions
We study whether a process can be completely described by its previous values.

Definition 4.0.4 (Causal conditions for AR(1)). The autoregressive process of order 1, AR(1), xt =
ϕxt−1 + wt is a causal process if it is stationary with values that are not depending on the future. In
this case, the absolute value of the root of 1 − ϕz = 0 must lie outside the unit circle. AR(1) process is
causal if

|z| =

∣∣∣∣ 1ϕ
∣∣∣∣ > 1 ⇐⇒ |ϕ| < 1

A causal process is stationary, but a stationary process is not necessarily causal.

Example 12. 1. (1−0.4B)xt = wt is causal since the root of (1−0.4z) = 0 satisfies |z| = |1/0.4| > 1.

2. (1 + 1.8B)xt = wt is not causal since |1/ϕ| < 1.

Definition 4.0.5 (Causal conditions for AR(2)). The AR(2) model

xt = ϕ1xt−1 + ϕ2xt−2 +wt

is causal when the roots of the characteristic polynomial

Φ2(z) = 1 − ϕ1z− ϕ2z
2

lie outside the unit circle ∣∣∣∣∣ϕ1 ±
√
ϕ2

1 + 4ϕ2

−2ϕ2

∣∣∣∣∣ > 1

Necessary and sufficient conditions for this are

|ϕ2| < 1 ϕ1 + ϕ2 < 1 ϕ2 − ϕ1 < 1
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Example 13. 1. xt = 1.1xt−1 − 0.4xt−2 is causal.

2. x+ t = 0.6xt−1 − 1.3xt−2 +wt is not stationary (necessary and sufficient conditons).

Definition 4.0.6 (Causal conditions for AR(p)). The autoregressive process of order p, AR(p),

xt = ϕ1xt−1 + ϕ2xt−2 + . . .ϕpxt−p +wt

is a causal process if all roots of the characteristic polynomial

Φp(z) = 1 − ϕ1z− ϕ2z
2 − . . . − ϕpz

p, ϕp ̸= 0

lie outside the unit circle.

The function polyroot(a), where a is a vector with polynomial coefficients, can be used to find the roots.

Moving Average Models
These are analogous to autoregressive models, except moving average models depend on white noise terms
instead of terms of the series itself. There is an analogous characteristic polynomial Θq(B), with the same
root condition on invertibility instead of causality.

Definition 4.0.7. A time series xt with zero mean is a moving average process of order q, denoted MA(q),
if it can be written

xt = θ1wt−1 + θ2wt−2 + . . . θqwt−q

where wt ∼ wn(0,σ2
w) and θq ̸= 0. This process has characteristic polynomial xt = Θq(B)wt where

Θq(B) = 1 + θ1B+ θ2B
2 + . . . θqBq, θq ̸= 0

If the roots zi of the polynomial Θq(z) satisfy |zi| > 1 for all i, then the process MA(q) is invertible.

Consider the MA(1) process. The autocorrelation function ρ(h) =
θ

1 + θ2 does not change after replacing
θ by 1/θ. That is

xt = wt + θwt−1 and xt = wt +
1
θ
wt−1

have the exact same autocorrelation function is ρ(h) (show later). This is why invertibility matters: if
the polynomial Θq(z) has all roots lying outside the unit circle, then the noise coefficients θ1, . . . , θq are
uniquely identified.
Compare the two models:

• AR(p) : Φp(B)xt = wt

• Autoregressive process is always invertible, but not always causal.

• MA(q) : xt = Θq(B)wt

• Moving average process is always causal, but not always invertible.

We check partial autocorrelation, autocorrelation plots. Out of a set of candidate models, we use AIC and
BIC in order to perform model selection for AR and MA.
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Auto-Regressive Moving Average Models
Definition 4.0.8. A time series xt is an auto-regressive moving average (ARMA) of order (p,q) if it can
be written

xt =

p∑
i=1

ϕixt−i +

q∑
j=1

θqxt−q

also written as
Φp(B)xt = Θq(B)wt

If xt has non-zero mean, we can rewrite the above withΦp(B)(xt − µ) = Θq(B)wt. Can also be written
in summation form with a constant term δ = µ(1−ϕ1 − · · ·−ϕp). This is the intercept from arima().

The ARMA satifies stationarity, invertibility, identifiability conditions if

• Stationary: Same condition as for AR(p) on Φp(z).

• Invertible: Same condition as for MA(q) on Θq(z).

• Identifiable: The model is not redundant. Φp(z) and Θq(z) have no common roots.

Example 14. The ARMA(1, 2) model xt = 0.2xt−1 +wt − 1.1wt + 0.18wt−2 can be written as

(1 − 0.2B)xt = (1 − 1.1B+ 0.18B2)wt =⇒ xt = (1 − 0.9B)wt

which is really an ARMA(0, 1) = MA(1) model. That is we can find the non-redundant expression by
removing common roots of the characteristic polynomials.

Definition 4.0.9. The MA(q) process xt = Θq(B)wt where

Θq(B) = 1 +

q∑
j=1

θjB
j

and wt ∼ wn(0,σ2
w) is invertible if it can be represented as a convergent infinite AR form: AR(∞).

Multiply both sides of above by Θq(B)
−1 to get

wt = Θq(B)
−1xt

Recall combinatorics and writing the above as a product of geometric series (factor the polynomial). We
denote

wtΘq(B)
−1xt = Π∞(B)xt = 1 −

∞∑
i=1

πiB
i = −

∞∑
i=0

πiB
i

Note we are ensured that
∑∞

i=0 |πi| <∞ with π0 = −1.

Recall the definition of a linear process as defined in Section 2. Above we have shown that xt can be
written as an infinite sum of white noise series, and is therefore a linear process.

Example 15. Consider xt = (1 + θB)wt. Then we have the geometric series

wt =
1

1 − (−θB)
xt =

∞∑
k=0

(−1)kθkBkxt = Π∞(B)xt
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This gives the expression
πi = (−1)i+1θi

and particularly

xt =

∞∑
k=1

(−1)i+1θiBixt +wt

Note why we need the condition for all the roots ofΘp to be within the unit circle: we want each geometric
series in the product to converge absolutely.

Example 16. Suppose x = wt + 0.4wt−1. This is invertible since |θ| = 0.4 < 1. We can then write

xt = wt + 0.4xt−1 − 0.42xt−2 + · · ·

In general we know Π∞(B) = Θq(B)
−1, so the coefficients πi can be obtained by equating

1 = Π∞(B)Θq(B)

= 1 − (π1 − θ1)B− (π2 + θ1π1 − θ2)B
2 · · ·

− (πj + θ1πj−1 + · · ·+ θq−1πj−q+1 + θqπj−q)B
j

All non-constant coefficients are 0,

πj = −θ1πj−1 − · · ·− θqπj−q

Now what if we reverse this and do the same for a causal process?

Definition 4.0.10. The AR(p) process
Φp(B)xt = wt

whereΦp(B) = 1−
∑p

j=1ϕjB
j,wt ∼ wn(0,σ2

w) is causal if it can be represented as a convergent infinite
MA(∞) form:

xt = Φp(B)
−1wt = Ψ∞(B)wt

where Φp(B)
−1 = Ψ∞(B) = 1 +

∑∞
k=1ψkB

k.

Using the same condition as before,
1 = Ψ∞(B)Φp(B)

gives us ψj = ϕ1ψj−1 + . . . + ϕpψj−p. This Ψ is known as the impulse response sequence.
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5. ARIMA Models Continued
Last lecture we discussed the models

• ARMA(p, 0) = AR(p): Φp(B)xt = wt and xt = Ψ∞(B)wt if this process is causal. The process
is causal if the series representation of 1/Φp(B) converges absolutely, which occurs when the roots
ofΦp(z) lie outside the unit circle. In this case, it is also denoted as MA(∞).

Ψ∞(B) = 1 +ψ1B+ψ2B
2 + . . .

• ARMA(0,q) = MA(p): xt = Θq(B)wt and wt = Π∞(B)xt if this process is invertible. The
process is invertible if the series representation of 1/Θq(B) converges absolutely, which occurs when
the roots of Θq(z) lie outside the unit circle. In this case, it is also denoted as AR(∞).

Π∞(B) = 1 − π1B− π2B
2 − . . .

• ARMA(p,q) means that
Φp(B)xt = Θq(B)wt

The convergence follows from the partial fraction decomposition of the reciprocal of the characteristic
polynomials.

Consider causal conditions for the ARMA(p,q) model. We may write

xt =
Θq(B)

Φp(B)
wt = Ψ∞(B)wt

Similar to the pure AR model situation, the ψi coefficients may be calculated by

Θq(B) = Φp(B)Ψ∞(B)

and equating coefficients, we are left with

ψj = ϕ1ψj−1 + · · ·+ ϕpψj−p + θj

Now consider similar invertible conditions. Then

wt =
Φp(B)

Θq(B)
xt = Π∞(B)xt

Using the similar equality
Θq(B)Π∞(B) = Φp(B)

we find
πj = −θ1πj−1 − · · ·− θpπj−p + ϕj

The coefficients ofΦ∞(B) are called the impulse response coefficients.
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The ACF of an Autoregressive Process

ACF of AR(1)

Suppose we have (1 − ϕB)xt = wt. When |ϕ| < 1 we may write

xt = (1 + ϕB+ ϕ2B2 + . . .)wt =

∞∑
j=1

ϕjwt−j

which is the MA(∞)Wold representation. This representation is useful because white noise variables are
easy to deal with: each of the terms are uncorrelated. The below holds with series manipulations justified
by |ϕ| < 1.

1. E(xt) =
∑∞

i=0ϕ
iE(xt−i) = 0

2. γ(0) = Var(xt) =
∑∞

i=0 E(ϕ
2ix2

t−i) = σ
2
w

∑∞
i=0ϕ

2i =
σ2
w

1 − ϕ2

3. γ(h) = E(xtxt+h) = σ
2
2
∑∞

i=0ϕ
i+hϕi = σ2

w

ϕh

1 − ϕ2

4. ρ(h) = ϕ(h)/ϕ(0) = ϕh and ρ(h) = ϕρ(h− 1)

These highlight some of our stationarity checks during model diagnostics. The ACF plot should have
exponential decay towards 0, oscillating decay, or sine/cosine like decay.

ACF of AR(2)

Consider the AR(2) process
xt = ϕ1xt−1ϕ2xt−2 +wt

Multiply the sides by xt−h and use linearity of expectation to get

γ(h) = E(xtxt−h) = ϕ1E(xt−1xt−h) + ϕ2E(xt−2xt−h)

= ϕ1γ(h− 1) + ϕ2γ(h− 2)

where we used E(wtxt−h) = E(wt

∑∞
j=0ψjwt−h−j) = 0. Dividing through by γ(0)we get the difference

equation
ρ(h) − ϕ1ρ(h− 1) − ϕ2ρ(h− 2) = 0

Using ρ(0) = 1, ρ(1) = ρ(−1) we have initial conditions

ρ(1) =
ϕ1

1 − ϕ2
ρ(2) =

ϕ2
1

1 − ϕ2
+ ϕ2

ACF of AR(p)

For a general AR(p) process, we can calculate the autocorrelation function solving

ρ(h) − ϕ1ρ(h− 1) − · · ·− ϕpρ(h− p) = 0, h ⩾ p

by following the same process as the A(2) case. For the AR(p) process we may describe the above as
Dp(B)ρ(h) = 0 for some p-th order polynomial Dp. Consider Dp(z) = 0 (z can be thought of as an
initial state)
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• If all roots are real, ρ(h) dampens exponentially as h→ ∞.

• If some roots are complex, then they will be in conjugate pairs and ρ(h) will dampen exponentially
in a sinusoidal fashion as h→ ∞.

• If roots are only complex, the time series will appear to be cyclic.

FINISH ! with difference equation approach. ALSO eigenvalues !

Partial Autocorrelation Function
Definition 5.0.1. Consider random variables X, Y,Z. The partial correlation between X, Y given Z is the
correlation of the residuals of X, Y regressed on Z. That is, for X̂ (X regress on Z) and Ŷ (Y regress on Z),
it is the correlation of

ρXY|Z = Corr(X− X̂, Y − Ŷ)

We are “removing the effect of Z”.

Definition 5.0.2. The partial autocorrelation of stationary process xt denoted ϕhh for h = 1, 2, . . . is

ϕhh = Corr(xt+h − x̂t+h, xt − x̂t), h ⩾ 2

and ϕ11 = Corr(xt+1, xt). The values are regressed on xt+1, . . . , xt+h−1, i.e. the linear dependence on
these is removed. If the process is Gaussian:

ϕhh = Corr (xt+h, xt | xt+1, . . . , xt+h−1)

PACF of AR(1) Process

Consider xt = ϕxt−1 +wt, |ϕ| < 1. By definition, ρ(1) = ϕ. Calculate ϕ22:

1. Consider the regression xt+2 on xt+1, say x̂t+2 = βxt+1.

2. Minimize β̂ = arg minE(xt+2 − x̂t+2)
2.

E(xt+2 − x̂t+2)
2 = γ(0) − 2βγ(1) + β2γ(0) =⇒ β̂ = γ(1)/γ(0) = ϕ

3. Analogously, consider the regression of xt on xt+1, x̂t = βxt+1. Minimizing E(xt − x̂t)2,

β̂ = ϕ

as well.

4. By causality,

ϕ22 = Corr(xt+2 − x̂t+2, xt − x̂t)
= Corr(xt+2 − ϕxt+1, xt − ϕxt)
= Corr(wt, xt − ϕxt−1) (uncorrelated noise)
= 0
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For a given lag h, a general method for finding the autocorrelation function ϕhh for any stationary process
with autocorrelation function ρ(h) satisfy the Yule-Walker equations.

ρ(j) = ϕh1ρ(j− 1) + ϕh2ρ(j− 2) + · · ·+ ϕhhρ(j− h)

and
ϕh,j = ϕh−1,j − ϕh,hϕh−1,j

j = 0, . . .h−1,giving a system of h linear equations. Solving these equations givesϕhh for any stationary
process.
Proposition 2. For an AR(p) process,

ϕhh =

{
ϕh, h ⩽ p

0, h > p

The sample autocorrelation is calculated by Levinson-Durbin equations1

ϕ̂hh =
ρ(h) −

∑h−1
j=1 ϕh−1,jρ(h− j)

1 −
∑h−1

j=1 ϕh−1,jρ(j)

Using ϕ11 = ρ(1), get

ϕ22 =
ρ22 − ϕ11ρ(1)
1 − ϕ11ρ(1)

=
ρ(2) − ρ(1)2

1 − ρ(1)2

We can iterate to get ϕhh. Replacing ρ with ρ̂ we may find ϕ̂hh. Under the assumption that AR(p) is the
correct model, then

ϕ̂hh ∼ N(0, 1/n)
The estimator is actually t-distributed but we approximate as normal for large enough n.

Autocorrelation of a Moving Average Process

ACF of MA(1)

Consider the process xt = wt + θwt−1.
1. E(xt) = 0

2. γ(0) = Var(xt) = E(w2
t + 2θwtwt−1θ

2w2
t−1) = σ

2
w (1 + θ2)

3. The autocovariance is independent of h:

γ(h) = E(wtwt+h) + θE(wt−1wt+h) + θE(wtwt+h−1) + +θ2E(wt−1wt+h−1)

γ(h) =


(1 + θ2)σ2

w, h = 0
θσ2

w, h = ±1
0, else

4. The autocorrelation is also independent of t.

ρ(h) =


1, h = 0

θ
1+θ2 , h = ±1
0, else

1Will show up on exam.
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ACF of MA(q)

For a general MA(q) process,
xt = Θq(B)wt

with Θq having coefficients θi.

1. E(xt) = 0

2. γ(0) = Var(xt) = σ2
w

(
1 + θ2

1 + · · · θ2
q

)
= σ2

w

∑q
i=0 θ

2
i

3. The autocovariance is independent of h:

γ(h) =

{
σ2
w(

∑q
i=h θiθi−h), h = 0,±1, . . . ,±q

0, else

4. The autocorrelation is also independent of t.

ρ(h) =


∑q

i=h θiθi−h∑q
i=0 θ

2
i

, h = 0,±1, . . . ,±q

0, else

PACF of MA(1)

Consider xt = wt + θwt−1, |θ| < 1. The partial autocorrelation function is given by

ϕhh = −
(−θ)h(1 − θ2)

1 − θ2(h+1)

Therefore the theoretical PACF will have one of

• Damped exponential decay.

• Damped oscillating exponential decay.

• Damped sinusoidal exponential decay.

Note: PACF for MA models behaves like ACF for AR models. ACF for MA models behaves like PACF for
AR models. Since an invertible ARMA model has an infinite AR representation,the PACF for MA models
will not cut off.

A question about ACF/PACF of MA/AR or an ARMA(1, 1) model will probably show up on the final.

ACF of ARMA(1, 1)

Consider the causal ARMA (1, 1)2 model xt = ϕxt−1 +wt + θwt−1, |ϕ| < 1. Then

γ(h) = Cov(xt+h, xt) = ϕE(xt+h−1xt) + E(wt+hxt) + θE(wt+h−1, xt)
2Slide 71 of Module 4 will appear on final.
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Recall

E(wt+hxt) =

{
ψ0σ

2
w, h = 0

0 else
E(wt+h−1xt) =


ψ1σ

2
w, h = 0

ψ0σ
2
w, h = 1

0 else

Therefore

γ(h) =


ϕγ(1) + σ2

w(1 + ϕθ+ θ2) h = 0
ϕγ(0) + σ2

wθ h = 1
ϕγ(h− 1) h ⩾ 2

Note the iterative formγ(h) = ϕh−1γ(1) forh ⩾ 2, with initial conditions given by the system of equations{
γ(0) = ϕγ(1) + σ2

w(1 + ϕθ+ θ2)

γ(1) = ϕγ(0) + σ2
wθ

This gives

γ(0) = σ2
2
1 + 2ϕθ+ θ2

1 − ϕ2 γ(1) = σ2
2
(1 + ϕθ)(ϕ+ θ)

1 − ϕ2

and for h ⩾ 1
γ(h) = σ2

2
(1 + ϕθ)(ϕ+ θ)

1 − ϕ2 ϕh−1

Summary for Model Diagnostics
These ACF/PACF results we have shown in the past two classes can be summarized in the below table. The
model diagnostics we discussed make sense in this context.

Model ACF PACF
White noise All zeros All zeros
AR(p) Tails off as exponential decay Spikes through lag p, cuts off
MA(q) Spikes through lag p, cuts off Tails off as exponential decay
ARMA(p,q) Decay beginning at lag q Decay beginning at lag p
Random walk No decay to zero All zero after lag 1
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6. Time Series Diagnostics
We perform Dickey-Fuller tests for non-stationarity, address regression with autcorrelated errors, compute
forecasts for ARMA models, and diagnose fitted models.

Test Statistics for Time Series Models
For a simple AR(1) model xt = ϕxt−1 + wt, the model is stationary when |ϕ| < 1 and non-stationary
when |ϕ = 1|. In order to avoid over-differencing, we might want to do a hypothesis tesk of whether this is
a random walk. Overdifferencing AR(1) may lead to ARMA(1, 1). The regression model can be written
with first difference operator

∆xt = (ϕ− 1)xt−1 +wt = δxt−1 +wt

The model can be estimated and testing for a unit root (i.e. random walk when δ = 0) by

H0 : δ = 0 or H1 : δ < 0

I.e. the null hypothesis is that the series is non-stationary. This is the Dickey-Fuller unit root test. There
are three versions:

1. ∆xt = δxt−1 +wt: unit root without drift and without trend

2. ∆xt = a0 + δxt−1 +wt: unit root test with drift and without trend

3. ∆xt = a0 + a1t+ δxt−1 +wt

Under the null hypothesis, then it can be shown

ϕ̂ ∼ N

(
ϕ,

1
n
(1 − ϕ2)

)
under the null this gives ϕ̂ ∼ N(1, 0) which does not make sense. Philips showed:

n(ϕ̂− 1) →d (χ2
1 − 1)/2∫1

0 W
2(t)dt

whereW(t) is Brownian motion on [0, 1].

We reject H0 if n(ϕ̂− 1) ⩽ d for d being the tabeled value of the Dickey Fuller unit toot test statistics.

Example 17. The AR(1) model xt = 0.946xt−1 where n = 34. Then the Dickey-Fuller test statistic is

n(ϕ̂− 1) = 34(0.946 − 1) = −1.836

The d statistic is α = −1.95. Since −1.836 > d, we do not reject H0, so there exists a unit root.

If xt has a unit root, then ∆xt = xt − xt−1 will be stationary (think of random walk).
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Forecasting
Forecasting is probably the most important topic in time series. The goal is to predict future values of xt
assuming we know x1:n = {x1, . . . , xn}. We first consider

xnn+m = E(xn+m | x1, . . . , xn) =
n∑

k=0

αkxk

the notation xnn+m means “given n observations, predict n+m-th observation“. The αi depend on n,m
but we do not include this in the notation for now. For example, if n = m = 1 then

x1
2 = α0 + α1x1

Linear predictors of this form that minimize

Q = E(xn+m − xnn+m)2 = E

(
xn+m −

n∑
k=0

αkxk

)2

are best linear predictors.

Proposition 3. Given x1, . . . , xn, the best linear predictor xmn+m =
∑n

k=0 αkxk is found by solving

E
(
(xn+m − xnn+m)xk

)
= 0 for each k = 0, 1, . . .

These are the prediction equations and are used to solve for coefficients α0, . . . ,αn. The proposition is
shown by minimizing with ∂Q/∂aj = 0. If the series is stationary, and E(xt) = µ = E(xnn+m), then by
taking expectations we see

µ = α0 +

n∑
k=1

αkµ

so

xnn+m = µ+

n∑
k=1

αk(xk − µ)

The αk can then be though of as the weight of the standard error at each observed time step xk.

1 Step Ahead Prediction

Definition 6.0.1. The BLP of the one step ahead predictor can be written

xnn+1 = ϕn1xn + ϕn2xn−1 + · · ·+ ϕnnx1 = ϕ
′
n · x

The dependence of the coefficients on n is shown.

These coefficients satisfy

E

((
xn+1 −

n∑
j=1

ϕnjxn+1−j

)
xn+1−k

)
= 0
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by Proposition 3 and since E(xi) = 0, since we can absorb the mean into a constant term. This can be
expanded and expectations taken in order to be written

n∑
j=1

ϕnjγ(k− j) = γ(k)

As a matrix, 3

Γnϕn = γn

where Γn = {γ(k − j)}nj,k=1 is an n × n symmetric matrix and γn = (γ(1), . . . ,γ(n)). There are the
Yule-Walker equations.

γ(1)
γ(2)
γ(3)

...
γ(n)

 =


γ(0) γ(1) γ(2) · · · γ(n− 1)
γ(1) γ(0) γ(1) · · · γ(n− 2)
γ(2) γ(1) γ(0) · · · γ(n− 3)

... ... ... . . . ...
γ(n− 1) γ(n− 2) γ(n− 3) · · · γ(0)

 ·


ϕn1
ϕn2
ϕn3

...
ϕnn


We may therefore estimate ϕ̂n = Γ−1

n γn. The mean one step ahead predictor is

Pnn+1 = E(xn+1 − x
n
n+1)

2 = γ(0) − γT
nΓ

−1
n γn

since xnn+1 = ϕ
T
nx

Example 18 (Prediction for an AR(2)). Consider the AR(2) process xt = ϕ1xt−1 + ϕ2xt−2 +wt. with
observation x1.

• With one observation x1, the one step ahead prediction of x2 is

x1
2 = ϕ11x1 = γ(1)/γ(0)︸ ︷︷ ︸

1D Yule-Walker

x1 = ρ(1)x1

• With two observations x2, the one step ahead prediction of x2 is given by solving

ϕ21γ(0) + ϕ22γ(1) = γ(2) and ϕ21γ(1) + ϕ(22)γ(0) = γ(2)

Then

ϕ2 =

[
γ(0) γ(1)
γ(1) γ(0)

]−1 [
γ(1)
γ(2)

]
Since E[(x3 − ϕ1x2 + ϕ2x1)xk] = E(w3xk) = 0 for k = 1, 2, we have ϕ21 = ϕ1,ϕ22 = ϕ2. We can also
verify ϕn1 = ϕ1,ϕn2 = ϕ2. Therefore

xnn+1 = ϕ1xn + ϕ2xn−1 for n ⩾ 2

If the series is a causal AR(p) process then for n ⩾ p we have

xnn+1 = ϕ1xn + ϕ2xn−1 + . . . + ϕpxn−p+1

where the justification is the same as the above example.
3Bring on formula sheet.
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The Levinson-Durbin Algorithm

Inverting Γ is computationally expensive for large n. We can use the Levinson-Durbin Algorithm which is
an iterative approach for computing this value.

ϕ00 = 0,R0
1 = γ(0)

For n ⩾ 1,

ϕnn =
ρ(n) −

∑n−1
k=1 ϕn−1,kρ(n− k)

1 −
∑n−1

k=1 ϕn−1,kρ(k)

and Pnn+1 = P
n−1
n (1−ϕ2

nn). In general the standard error of the one step ahead forecast is the square root
of

Pnn+1 = γ(0)
n∏
j=1

(1 − ϕ2
jj)

m Step Ahead Prediction

Definition 6.0.2. The m step ahead prediction wherem ⩾ 1 is

xnn+m = ϕ
(m)
n1 xn + ϕ

(m)
n2 xn−1 + · · ·+ ϕ(m)

nn x1 = ϕ
(m) ′

n · x

all results for this are very similar to the one step ahead case.

Innovations Algorithm

For a time series process xt, the innovation is defined as a residual for the one step ahead estimator:

xt − x
t−1
t , for t = 1, 2, . . .n

For the MA(n) process, xt =
∑n

j=1 θjwn−j where wt ∼ wn(0,σ2
w). The one step ahead predictors xtt+1

and their mean squared errors Ptt+1 can be calculated iteratively as

x0
1 = 0,P0

1 = γ(0)

xtt+1 =

t∑
j=1

θtj(xt+1−j − x
t−j
t+1−j)

Ptt+1 = γ(0) −
t−1∑
j=0

θ2
t,t−jP

j
j+1
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7. ARMA Forecasting
Assume xt is a causal, invertible ARMA(p,q) process

Φp(B)xt = Θq(B)wt

where E(xt) = 0, since we may replace x ′t = xt − µ. There are two types of forecasts

1. xnn+m = E(xn+m | xn, xn−1, . . . , x1), the minimum mean square predictor based on x1, . . . , xn.

2. x̃n+m = E(xn+m | xn, xn−1, . . . , x1, x0, . . .), the xn+m predictor based on infinite past data.

These are generally not the same, and for large amounts of data, x̃n+m will provide a good approximation.
To see this, write xn+m in the causal form

xn+m =

∞∑
j=0

ψjwn+m−j

Taking conditional expectations, and wt = 0 when t > n,

x̃n+m =

∞∑
j=m

ψjwn+m−j

The residual satisfies

xn+m − x̃n+m =

m−1∑
j=0

ψjwn+m−j =⇒ Pnn+m = E(xn+m − x̃n+m)2 = σ2
w

m−1∑
j=0

ψ2
j

The covariance satisfies

E[(xn+m − x̃n+m)(xn+m+h − x̃n+m+h)]
2 = σ2

w

m−1∑
j=0

ψjψj+h

Asm→ ∞, the mean square prediction satisfies

Pnn+m → σ2
w

∞∑
j=0

ψ2
j = γx(0) = σ2

x

From the model in its invertible form

wn+m =

∞∑
j=0

πjxn+m−j

We have

x̃n+m = −

m−1∑
j=1

πjx̃n+m−j −

∞∑
j=m

πjxn+m−j

which may be calculated recursively inm.
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Definition 7.0.1. The truncated predictor is written as

x̃nn+m = −

m−1∑
j=1

πjx̃
n
n+m−j −

n+m−1∑
j=m

πjxn+m−j

and may also be calculated recursively inm.

Definition 7.0.2. For an ARMA(p,q) model the truncated predictor is written

x̃nn+m = ϕ1x̃
n
n+m−1 + . . . + ϕpx̃

n
n+m−p + θ1w̃

n
n+m−1 + . . . + θqw̃n

n+m−q

where we consider

• x̃nt = xt for 1 ⩽ t ⩽ n

• x̃nt = 0 for t ⩽ 0

• w̃n
t = 0 for t ⩽ 0, t > n

• wn
t = Φp(B)x̃

n
t − θ1w̃

n
t−1 − . . . − θqw̃n

t−q for 1 ⩽ t ⩽ n.

Example 19 (ARMA(1,1) predictor). Consider xn+1 = ϕxn + wn+1 + θwn. Based on the truncated
predictor,

x̃nn+1 = ϕxn + θwn

and form ⩾ 2, x̃nn+m = ϕxn. This may be calculated recursively, by setting w̃n
0 = 0, x0 = 0 and

w̃n
t = xt − ϕxt−1 − θw̃

n
t−1

The approximate forecast variance becomes

Pnn+m = σ2
w

(
1 +

(ϕ+ θ)2(1 − ϕ2(m−1))

1 − ϕ2

)

8. Estimation
Assume n observations x1, . . . , xn from a causal, invertible, Gaussian ARMA(p,q) process

xt = ϕ1xt−1 + . . . + ϕpxt−p +wt + θ1wt−1 + . . . + θqwt−q

where the parameters p,q are known. Later we discuss how they are determined, which is typically through
fitting different orders which minimize AIC, BIC.

Consider the AR(p) model. Multiplying by xt−h, we get the p+ 1 Yule-Walker equations

σ2
w = γ(0) − ϕ1γ(1) − . . . − ϕpγ(p)

γ(h) = ϕ1γ(h− 1) + . . . + ϕpγ(h− p)

In matrix notation, this is written

Γpϕ = γp σ2
w = γ(0) − ϕ · γp

Using the method of moments we replace γ(h) by γ̂(h) to get the Yule-Walker estimators.

ϕ̂ = R̂−1
p ρ̂p σ̂2

w = γ̂(0)[1 − ρ̂pR̂
−1
p ρ̂p]
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Proposition 4. The asymptotic behaviour of the Yule-Walker estimators in the case of causal AR(p) pro-
cesses is √

n(ϕ̂− ϕ) →d N(0,σ2
wΓ

−1
p ) and σ̂2

w →p σ2
w

Proposition 5. The asymptotic behaviour of the partial autocorrelation satisfies
√
nϕ̂hh → N(0, 1)

The Levinson-Durbin algorithm can be used to calculate ϕ̂ without inverting Γ̂p by replacing γ(h) with
γ̂(h). We iteratively calculate ϕ̂.

Example 20. Suppose γ̂(0) = 8.903 with ρ̂(1) = 0.849 and ρ̂(2) = 0.519. Then

ϕ̂ =

[
1 0.849

0.849 1

]−1 [0.849
0.519

]
=

[
1.463
−0.723

]
Using proposition 3, the covariance matrix of ϕ̂ is

1
144

1.187
8.903

[
1 0.849

0.849 1

]−1

Method of Moments
Example 21 (MA(1)). For the MA(1) process xt = wt + θwt−1, we write

xt =

∞∑
j=1

(−θ)jxt−j +wt

Then ρ̂(1) = θ̂/(1 + θ̂2), and we estimate θ̂ by solving the above equation. When |ρ̂(1)| < 1
2 ,

θ̂ =
1 −

√
1 − 4ρ̂(1)2

2ρ̂(1)

Asymptotically,

θ̂ ∼ AN
(
θ,

1 + θ2 + 4θ4 + θ6 + θ8

n(1 − θ2)2

)

Maximum Likelihood
Consider the causal AR(1) model xt = µ+ ϕ(xt−1 − µ) +wt. Given data x1, . . . , xn, then

L(µ,ϕ,σ2
w) = f(x1, . . . , xn | µ,ϕ,σ2

w)

= f(x1)f(x2 | x1) · · · f(xn | xn−1)

= f(x1)

n∏
t=2

fw((xt − µ) − ϕ(xt−1 − µ))

Where fw is the density of wt, so fw(xt | xt−1) is a normal density. Expanding this, we see

= (2πσ2
w)

−n/2(1 − ϕ2)−1/2 exp
(
−
S(ϕ,µ)

2σ2
2

)
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Where S is the sum of squares, or the square prediction error

S(µ,ϕ) = (1 − ϕ2)(x1 − µ
2) +

n∑
t=2

[(xt − µ) − ϕ(xt−1 − µ)]
2

S(µ,ϕ) is the unconditional sum of squares, and the unconditional least squares estimate is obtained
by minimizing S. From this, the MLE of σ2

w is given by

σ̂2
w = S(µ̂, ϕ̂)/n

The conditional likelihood is taken by conditioning on the initial observation

L(µ,ϕ,σ2
w | x1) = (2πσ2

w)
−(n−1)/2(1 − ϕ2)−1/2 exp

(
−
S(ϕ,µ)

2σ2
2

)
and σ̂2

w = S(µ̂, ϕ̂)/(n− 1).

For general AR(p) models the same process for maximum likelihood estimates is followed. For general
ARMA models, the likelihood is difficult to derive explicitly, and is typically written as a function of the
innovation xt−xt−1

t . A common numerical algorithm for minimizing S(µ, ϕ⃗, θ⃗) in an ARMA(p,q)model
is with the Newton-Raphson algorithm.

Asymptotics of some distributions
SLIDE 46, 47 MODULE 5 ON EXAM

ARIMA Models
Definition 8.0.1. A time series with zero mean xt is called Autoregressive-Integrated-Moving average
of order (p,d,q) denoted ARIMA(p,d,q) if the d-th difference of xt is an ARMA (p,q) process. That
is xt is ARIMA(p,d,q) if

Φp(B)∇dxt = δ+Θq(B)wt

where δ = µ(1 − ϕ1 − · · ·− ϕp),Φp,Θq, and ∇d = (1 − B)d as before.

Example 22. • ARIMA(1, 1, 0) : xt = ϕxt−1 + xt−1 − ϕxt−2 +wt = (1 − ϕB)(1 − B)xt = wt

• ARIMA(1, 1, 1) : (1 − ϕB)(1 − B)xt = (1 + θB)wt

• ARIMA(1, 2, 2) : (1 − ϕB)(1 − B)2xt = (1 + θ1B+ θ2B
2)wt

There are two main steps to verify models after applying transformations.

• Goodness of fit: t-tests, AIC, BIC, SIC, likelihood ratio tests for adding and removing parameters
to the model.

• Residuals: We assume the series is stationary with Gaussian white noise innovations. Residuals
should look like white noise series.

• If the appropriate ARMA model is chosen there will be theoretically zero autocorrelation in the
errors.



9 REGRESSION CONTINUED 32

• To check the frequency of ARMA fitted model, we can use autocorrelation function (ACF/PACF) of
the innovations, or standardized innovations:

et =
xt − x̂

t−1
t√

P̂t−1

A good check on correlation structure is to plot sample correlations and ensure they do not fall outside
of ±2/

√
n.

In the (et) series,
H0 : ρ(h) = 0, Ha : ρ(h) ̸= 0

the null hypothesis is that ρ(h) = 0, for all h = 1, . . . ,m. Typicallym ≈
√
n. The alternative hypothesis

is ρ(h) ̸= 0. Recall

ρ̂(h) =

∑n
t=h+1 etet−h∑n

t=1 e
2
t

Test statistics
In order to test uncorrelatedness at individual lags h = 1, . . . ,m, there are two portmanteau tests that can
be used to test all autocorrelations simultaneously.

1. Box-Pierce:

Qm = n

m∑
h=1

ρ̂(h)2 ∼ χ2
m−p−q

2. Ljung-Box: 4

Q̃m = n(n+ 2)
m∑

h=1

ρ̂(h)2

n− h
∼ χ2

m−p−q

Generally, if the model fits well there should be no significant patter in et.

9. Regression Continued

Autocorrelated errors
We discuss regression models following

yt =

r∑
j=1

βjzt,j + xt

where xt has covariance function γx(s, t). In ordinary least squares, the assumption is that xt is gaussian
white noise wt, constant variance and independent. Here xt becomes the error process. If it has non-
constant variance, weighted least squares can be used. The weighted least squared estimate is used when
the covariance matrix has diagonal elements non-zero, all else zero. I.e. xt are independent but do not
have equal variance.

4This will be on the final - know how to calculate. Examples on Module 5 slides 58-59.
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Suppose the xt are not independent (i.e. covary in the sample),

y = Zβ+ x

whereZ is the matrix of input variables. We diagonalize the covariance matrix to use weighted least squares
again. Letting Γ = {γx(s, t)} be the covariance matrix then the transformation

Γ−
1
2y = Γ−

1
2Zβ+ Γ−

1
2x

gives a new equation
y∗ = Z∗β+ δ

which is in the form of the classical linear model. That is, the new linear model has independent errors,
and we can use the weighted least squares estimate.

β̂ = (Z∗TZ∗)−1Z∗Ty =⇒ Cov(β̂) = σ2(Z∗TZ∗)−1

and in terms of the original model,

β̂ = (ZTΓ−1Z)−1ZTΓ−1y

Regression in AR(p)

Consider the AR(p) case Φp(B)xt = wt and the regression model

yt = Zβ+ xt

Multiplying through by the characteristic polynomial, we have

Φp(B)yt︸ ︷︷ ︸
y∗
t

=

r∑
j=1

βjΦp(B)zt,j︸ ︷︷ ︸
z∗t,j

+Φp(B)xt︸ ︷︷ ︸
wt

Which gives us the regression model. I.e. if p = 1 then z∗t,j = zt,j − ϕzt−1,j. Then

S(ϕ,β) =
n∑

t=1

w2
t =

n∑
t=1

(
Φp(B)yt −

r∑
j=1

βjΦp(B)zt,j

)

with ϕ,β being coefficients of the polynomial, and parameters of linear model respectively.

Regression in AR(p,q)

If we have that
Φp(B)xt = Θq(B)wt

then setting Π(B) = Φp(B)/Θq(B) if Θq has appropriate roots, we get the same expression

wt = Π(B)xt

and minimize the same sum, with parameters for Θq

S(ϕ, θ,β) =
n∑

t=1

w2
t =

n∑
t=1

(
Π(B)yt −

r∑
j=1

βjΠ(B)zt,j

)
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Identification

We do not actually know the behaviour of xt before we run a regression.

1. Run an ordinary regression of yt ∼ zt,1, . . . , zt,r

2. Identify arma models in the residuals x̂t = yt − Zβ̂

3. Run weighted least squares or MLE on regression model using previous discussion

4. Inspect ŵt for whiteness, iterate additional steps if needed

Detecting Autocorrelation
The Durbin-Watson test statistic can be used to detect the presence of autocorrelation in a regression
model based on assumptions that the observations come from an AR(1) model. This test is used to check
ϕ = 0.

H0 : ϕ = 0, xt = wt or Ha : ϕ > 0, xt = ϕxt−1 +wt

The Durbin-Watson statistic 5 for time ordered residuals e1, . . . , en is given by

d =

∑n
t=2(et − et−1)

2∑n
t=1 e

2
t

• If d < dL,α, reject H0

• If d > dU,α, do not reject H0

• If dL,α < d < dU,α, inconclusive

Testing the hypothesis

H0 : ϕ = 0, xt = wt or Ha : ϕ < 0, xt = ϕxt−1 +wt

Can be done with

• If 4 − d < dL,α, reject H0

• If 4 − d > dU,α, do not reject H0

• If dL,α < 4 − d < dU,α, inconclusive

The above conditions for positive or negative correlation can be combined to test Ha : ϕ ̸= 0.

5Will appear on final.
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Seasonal ARIMA Models
Definition 9.0.1. The seasonal ARIMA of order (p,d,q)× (P,D,Q)s where s is the number of seasons
is written

Φp(B)ΦP(B
s)(1 − B)d(1 − Bs)Dxt = δ+Θp(B)ΘQ(B

s)wt

The idea is we apply an additional polynomial in Bs in order to capture a seasonal component in the data
at lag s. We assume ΦP, ΘQ have no common roots. (P,D,Q) are the order of the seasonal autore-
gressive, seasonal differencing , seasonal moving average models respectively. (p,d,q) are called the
non-seasonal orders. We write

∇D
s = (1 − Bs)D

for simplicity. The pure seasonal autoregressive model is denoted

ΦP(B
s)xt = Θq(B

s)wt

Similar causality and invertibility conditions hold for these polynomials.

Example 23. 6 For the first order seasonal s = 12 moving average model xt = wt +Θwt−12 we have

γ(0) = (1 +Θ2)σ2
w, γ(±12) = Θσ2

w, 0 otherwise

Example 24. 7 For the first order seasonal s = 12 moving autoregressive model xt = Φxt−12 + wt we
have

γ(0) = σ2
w/(1 −Φ2), γ(±12h) = Φhσ2

w/(1 −Φ2), 0 otherwise

10. Additional Topics

Mainly extra8 topics, spectral analysis, fractional differencing and long memory, volatility.

Spectral Analysis
Many time series show complex periodic behaviour. Spectral analysis explains the underlying periodicities,
where we decompose a stationary series into sine and cosine waves with uncorrelated coefficients.

Definition 10.0.1. The spectral density is a frequency domain representation of a time series that is directly
related to the autocovariance time domain representation: discrete Fourier transform.

Frequency domain approach considers regression on sinusoids, whereas time domain considers regression
on past values.

• Regression: xt = ϕ1xt−1 + ϕ2xt−2 + · · ·

• Spectral: xt =
∑

ω∈NAω,1 cos(2πωt) +Aω,2 sin(2πωt)
6This will appear on the final as a MCQ.
7This will appear on the final as a MCQ.
8There will only by 2 MCQ on exam based on this topic.
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Consider the periodic process

xt = A cos(2πωt+ ϕ) for t = 0,±1,±2, · · ·

where T is the length of one cycle,ω = 1/T is the frequency, A is the amplitude, ϕ is the phase. We may
write

xt = β1 cos(2πωt) + β2 sin(2πωt)

where β1 = A cos(ϕ), β2 = − sin(ϕ). Therefore A =
√
β2

1 + β
2
2 and ϕ = tan−1(−β2/β1).

Proposition 6. A,ϕ are independent random variables where

A ∼ χ2
2, ϕ ∼ U(−π,π) ⇐⇒ β1,β2 ∼ N(0, 1)

The autocovariance of uncorrelated sinusoids is the sum of their autocovariances. Therefore for

xt =

k∑
j=1

Aj cos(2πωjt) + Bj sin(2πωjt)

we have γ(h) =
∑k

j=1 σ
2
j cos(2πωjh).

Definition 10.0.2. For xt with autocovariance γ satisfying
∑∞

h=−∞ |γ(h)| < ∞ we define its spectral
density 9 as

f(ω) =

∞∑
h=−∞γ(h)e

−2πiωh

and the normalized spectral density as

f∗(ω) =

∞∑
h=−∞ ρ(h)e

−2πiωh

Note that f(ω) > 0, f is periodic, f has period 1: we may restrict the domain of f to − 1
2 ⩽ ω ⩽ 1

2 .
Inverting the fourier transform gives the autocovariance function

γ(h) =

∫ 1
2

− 1
2

e2πiωhf(ω)dω

We may split the above summation definition of f as 10

f(ω) = γ(0) +
∞∑

h=1

γ(h)e−2πiωh +

−1∑
h=−∞γ(h)e

−2πiωh

= γ(0) + 2
∞∑

h=1

γ(h) cos(2πωh)

The corresponding normalized spectrum is

f∗(ω) = ρ(0) + 2
∞∑

h=1

ρ(h) cos(2πωh)

9Will show up on exam
10Will show up on exam, might be asked to show spectral density of MA process
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Example 25. We compute the spectral density of an AR(1) process.

f(ω) = γ(0) +
∞∑

h=1

γ(h)e−2πiωh +

∞∑
h=1

γ(h)e2πiωh

=
σ2

1 − ϕ2

(
γ(0) +

∞∑
h=1

(ϕe2πiω)h +

∞∑
h=1

(ϕe−2πiω)h

)

=
σ2

1 − ϕ2

(
1 − ϕe−2πiωϕe2πiω

(1 − ϕe−2πiω)(1 − ϕe2πiω)

)
=

σ2

1 − 2ϕ cos(2πω) + ϕ2

Long Memory and Fractional Differencing
The ARMA(p,q) is often called a short memory process since the coefficients in Wold representation
xt =

∑
ψjwt−j decay exponentially. The result implies ρ(h) → 0 exponentially fast as h→ ∞.

When the ACF of xt decays slowly, we may difference the series until it seems stationary

∇xt = (1 − B)xt

However, this may yield an over-differencing of the model by too strongly modifying it. Such a process
is a long memory time series. The basic long memory series is a special case of the autoregressive
fractionally integrated model ARIFMA(0,d, 0) given by

(1 − B)dxt = wt

where 0 < d < 0.5. When d is not an integer, the d-th difference

∇dxt = (1 − B)dxt =

(
1 − dB+

d(d− 1)
2!

B2 −
d(d− 1)(d− 2)

3!
B3 + · · ·

)
xt

Definition 10.0.3. The auto-regressive fractionally integrated ARFIMA(p,d,q) is(
1 −

p∑
i=1

ϕiB
i

)
(1 − B)dxt =

(
1 +

q∑
i=1

θiB
i

)
wt

where d is the fractional difference, takes a value between 0, 1 possibly up to 2+ in more extreme cases.
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