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May 9: Lecture 1

Syllabus

This is a course on linear regression. The focus is using R to do data analysis, and build the mathe-
matical foundation for regression. We will understand how prediction works later, which is the foun-
dation for data science.

Marking

• 2 HW - 15% each, due June 1, June 15

• Test - 25% on May 25

• Exam - 45% during June 22-27

Books J. Sheather, A Modern Approach to Regression w/ R and D. Montgomery, Linear Regression
Analysis.

Review

Definition 1. A sample space S is the set of possible events. A random variable is a function X : S →R
assigning a number to elements of the sample space.

Constants can also be pseudo random variables. These are called degenerate random variables that
have a degenerate distribution since they have infinite cdf.

Definition 2. For an event A ⊂ S , we define the indicator function IA as

IA(s ) =

¨

1, s ∈ A

0, s /∈ A

These are important since we later use them to create dummy variables in linear regression. When
we write an inequality involving random variables, we mean that it holds for all elements of the sam-
ple space. I.e. X ≥ Y =⇒ X (s ) = Y (s ),∀s ∈ S .

Example 1. Consider S = {1, 2, 3, 4, 5, 6}. For s ∈ S , X (s ) = s , let Y (s ) = X (s ) + I6(s ). Then Y = X for all
s ∈ S except 6, where Y = 7, X = 6.

Definition 3. Discrete r.v. are functions from a countable sample space, and continuous r.v. are
functions from an uncountable sample space. There are also mixture random variables, which are
continuous/discrete for different parts of the sample space. Random variables can be univariate and
multivariate as well.

Example 2. The multinomial distribution is an example of a discrete multivariate random variable.

Definition 4. If X is a random variable, the p.d.f. is the derivative of the c.m.f. As well, P (a ≤ X ≤
b ) =

∫ b

a
f (x )d x where f (x ) is pdf. Similar thing holds for discrete r.v.

Proposition 1. The expectation of two random variables is linear. For Z = a X + b Y , X , Y r.v., then
E (Z ) = a E (X ) + b E (Y ).

3
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Definition 5. The variance of X is V (X ) = E (X −µx )2. The sample variance s 2 =
∑

(xi−x )2

n−1 . Note we
divide by n −1 so that it is an unbiased estimator (STA261).

Some properties:

• V (X )≥ 0

• V (a X + b ) = a 2V (x )

• V (X ) = E (X 2)−E (X )2

• V (X )≤ E (X 2)

• σX =
p

V (X )

Note: In linear regression, the variance of the predicted variable depends on the slope of regression
line but not on the intercept (second property).

Let X1, X2, Y be r.v. and A be an event. Let Z = a X1+ b X2. Then

• E (Z | A) = a E (X1 | A) + b E (X2 | A)

• E (Z | Y = y ) = a E (X1 | Y = y ) + b E (X2 | Y = y )

• E (Z | Y ) = a E (X1 | Y ) + b E (X2 | Y )

Proposition 2. (Laws of Total Expecation and Variance) E (E (Y | X )) = E (Y ) and V (X ) = V (E (X |
Y ))+E (V (X | Y )).

We will see that linear regression is a conditional r.v., and the above will be very useful. For X1, . . . , Xn

i.i.d. random variables, x1 . . . xn realizations, then x =
∑

xi

n . The sample average X =
∑

X i

n is a random
variable. In general, any function of n i.i.d. random variables is a random variable, and called a
sampling statistic that follows a sampling distribution.

Theorem 1. (Central Limit Theorem) For X1, . . . , Xn i.i.d. f (x ,θ ), E (X ), V (x )<∞, then X−µ
σ/
p

n →N (0, 1)
converges in distribution for sufficiently large n .

Proof. Proof with moment generating functions.

Example 3. In the Cauchy distribution, this does not hold since it has infinite mean and variance.

Definition 6. The covariance Cov(X , Y ) = E [(X − µx )(Y − µY )] = E (X Y )− E (X )E (Y ). Covariance
quantifies the relationship between two variables, i.e. how much one varies with the other. The cor-
relation Corr(X , Y ) = C o v (X ,Y )p

V (X )V (Y )
.

• Covariance is an inner product, variance is norm.

• V (X +Y ) =V (X ) +V (Y ) +2Cov(X , Y ).

• If X ⊥ Y , V (X +Y ) =V (X ) +V (Y ).

• In general, V (
∑

i X i ) =
∑

i V (X i ) +2
∑

i< j Cov(X i , X j ).
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These will be useful in regression, where we try to identify relationships between r.v.s.

Definitions in statistics

In probability, we are given a mathematical model to work with. In statistics, we infer properties of a
mathematical model. The steps of data analysis are: state the problem, identify what data is needed,
decide on a model and collect data, clean data, estimate parameters of the model, and carry out
appropriate tests, draw conclusions.

Introduction to Regression

Definition 7. The corelation coefficient

ρX ,Y =

∑

i (xi − x )(yi − y )
Æ
∑

i (xi − x )2
Æ
∑

i (yi − y )2
=

Cov(X , Y )
sx sy

The above value is somewhat like the cos(θ ) between the vectors X , Y ; recall dot product. When we
discuss corelation, we talk about linear relations only; the linear association between X , Y . We can
see this by considering X and Y = X 2. Corelation is symmetric, it does not indicate the direction of
the symmetry (which causes which/causation). Corelation only says the influence on the change of
one variable when the other changes; think about moving along non-orthogonal vectors and project-
ing.

Galton investigated the effect of fathers heights on their sons height. Galton termed regression as a
‘regression’ of heights towards the mean; on average, heights of sons move towards the mean, so the
average height across generations is the same.

In a linear regression, we assume there is a linear relation Y = β0 + β1X + ε between the random
variables X , Y where ε is an error random variable. The deviation not captured by linearity is incor-
porated to ε. Given two values of X , it is not guaranteed that the value of Y is the same. But for a
unique X we get unique average Y . We want E (Y | X = x ) = β0+β1X ; the relationship between the
mean of Y and a specific value of X is linear. Note E (ε) = 0. We call X the explanatory, predictor,
independent variable and Y as the response, outcome, dependent variable. Suppose we are given
paired data (x1, y1), . . . , (xn , yn ). We try to fit a linear regression to model the relationship between X
and Y :

Y =β0+β1X +ε and want E (Y | X = x ) =β0+β1X

The values of β0,β1 are not yet known and need to be estimated. In the sample, the error ei replaces
εi . The line best predicting Y as X changes should minimize the squares of the errors ei = yi − ŷi

where ŷi = b0+ b1 xi where b0, b1 are the intercept and slope of the regression line. We minimize the
squares

∑

i e 2
i . The ei are referred to as residuals; minimize residual sums squared. Note

RSS (b0, b1) =
∑

i

e 2
i =

n
∑

i=1

(yi − ŷi )
2 =

n
∑

i=1

(yi − b0− b1 xi )
2

Aside: What value of a minimizes (1)
∑

|xi −a |, and which minimizes (2)
∑

(xi − a )2? Answer: (1)
a =Med(X ), (2) a = x . We do not minimize the sum of the residuals, since this must always be 0. We
minimize the RSS with respect to b0, b1.

∂ RSS

∂ b0
=−2

∑

i

(yi − b0− b1 xi ),
∂ RSS

∂ b1
=−2

∑

i

xi (yi − b0− b1 xi )
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so setting these to 0, we get the normal equations
∑

i

yi = b0n + b1

∑

i

xi ,
∑

i

xi yi = b0

∑

i

xi + b1

∑

i

x 2
i

Solving these, we get

β̂0 = b0 = y − β̂1 x , β̂1 = b1 =

∑

i xi yi −n x y
∑

x 2
i −n x 2 =

∑

(xi − x )(yi − y )
∑

(xi − x )2
=

SX ,Y

SX

The intercept is the average value of the response when X = 0.

Class Afterthoughts/Questions

When the errors have E (ε = 0), then V (ε) = E (ε2)− E (ε)2 = E (ε2). By minimizing this in the sample,
we minimize the variance of the errors (?)

May 11: Lecture 2

Clarifying last class: ŷi is the conditional mean of yi . When this is true, then
∑

i ei = 0. That is, we
estimate ŷi so that

∑

i ei = 0.

Regression continued

We continue discussing linear regression; fitting a linear relation assuming it exists. The aim is to infer
the true values of β0,β1 by inspecting their sampling distributions. We also make some assumptions
regarding the error terms; the properties of their distributions (ε is r.v.).

Assumption: Linearity

The conditional mean of Y | X = x is linear with respect to X . However, the relationship E (Y | X ) and
X does not have to be linear, but the linearity assumption is linearity in the parameters.Our relation-
ship must be realistic given the context; introducing linearity may produce unrealistic relationships.

R simulation: When generating random dataset, we set a seed so our results are reproducible. Al-
ways start with a seed in assignments. Note the Y variable is the transformation β0 + β1 log X + ε.
Introducing linear relationship between X and Y is inaccurate. It is linear in the parameters β0,β1

however.

Qs: Chaos in random number generation? Look up random number generation algorithms. How do
we quantify linearity in a data set? Mostly with plots but is there better way?

Assumption: Independence

The errors εi are independent. That is, the deviations from the mean are not related; they are i.i.d. r.v.
This reduces predictive capibilities in some areas, but we can relax this assumption later (generalized
least squares).

6
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Assumption: Homoscedasticity (equal variance)

The error variance does not change depending on X . That is V (ε | X = x ) =σ2 and is independent of
x . In the R codes, we see that variance of errors increases with X , which decreases predictive power
as X increases. Moreover, this implies some of the variation in the errors is explained by X , which
violates our assumption. Variance cannot depend of X . ε⊥ X . This is relaxed in GLS.

In multiple linear regression, we talk about the Gauss-Markov assumption, but we need to make some
assumptions about how εi is distributed in order to make inferences.

Assumption: Normality

ε ∼ N (0,σ2). The previous assumptions are required to obtain the least squares estimates, but nor-
mality is not required. Under this assumption, we can make confidence intervals and tests, and have
nice properties following from normal distribution.

There are more assumpitons in general, but these are most important.

More about variance of ε

We have estimated β0, β1 using least squares. However, we have another parameter to estimate;
V (ε) = σ2. From afterthoughts, V (ε) = E (ε2) = σ2. We take the average of e 2

i using this, since we

want summary measure. The mean residual squared (MRS) can be calculated as s 2 =

∑

i e 2
i

n −2
. We

show this estimator of E (ε2) is unbiased as homework; prove this!.

Inferences about the regression model

Conditional expectation and variance of β̂1

Recall β1 =

∑

(xi − x )(yi − y )
∑

(xi − x )2

Proposition 3.
∑

(xi − x )(yi − y ) =
∑

i (xi − x )yi

Proof.
∑

(xi − x )(yi − y ) =
∑

(xi yi − x yi − y xi + x y )

=
∑

(xi yi − x yi )−n y x +n x y

=
∑

(xi − x )yi

A symmetric sum can be established for
∑

i (yi − y )xi . However, the above is needed to simplify con-
ditional expectation calculations. We may also show

∑

(xi − x )xi =
∑

(xi − x )2. The idea of both of
these proof is making the substitution n x =

∑

xi .

Proposition 4.
∑

(xi − x )xi =
∑

(xi − x )2

7
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Proof.
∑

(xi − x )xi =
∑

(x 2
i − x xi )

=
∑

(x 2
i −2x xi ) +n x 2

=
∑

(xi − x )2

Other way of writing:
∑

(xi x )2 =
∑

x 2
i −n x 2. Now, we calculate conditional expectation of β̂1

E (β̂1 | X = xi ) = E

�∑

(xi − x )yi
∑

(xi − x 2)
| X = xi

�

=

∑

(xi − x )E (Yi | X = xi )
∑

(xi − x )2

Substituting E (Yi | X i = x ) =β0+β1 x , then

E (β̂1 | X = xi ) =

∑

i (xi − x )β0
∑

(xi − x )2
+

∑

i (xi − x )β1 xi
∑

(xi − x )2
=
β1

∑

i (xi − x )2
∑

(xi − x )2
=β1

Since
∑

(xi − x ) =
∑

xi −n x = 0 and by above prop.,
∑

i (xi − x )xi =
∑

(xi − x )2. Therefore β̂1 does not
depend on X , and has expected value of β1; it is an unbiased estimator of β1. That is, E (β̂1 | X = xi ) =
E (β̂1) =β1. Next, we may calculate V (β̂1). First, V (Yi | X = xi ) =σ2, that is, the variance of the error.

V (β̂1 | X = xi ) =

�∑

(xi − x )yi
∑

(xi − x 2)
| X = xi

�

=

∑

i (xi − x )2V (Yi | X = xi )
(
∑

i (xi − x )2)2
=

σ2

∑

(xi − x )2
=
σ2

SX ,X

Inferences for variance of β̂1

Since εi ∼N (0,σ2), then Yi | X ∼N (β0+β1X ,σ2). Letting ci =
∑

(xi−x )
∑

(xi−x )2 then β̂1 =
∑

ci yi . Observe that

this is a linear combination of normally distributed random variables, so β̂1 is normally distributed!
Thus

β̂1 | X = xi ∼N

�

β1,
σ2

SX ,X

�

We can construct a 1−α confidence interval for β1 which has extremes β̂1±Z1−α/2
σ

p

SX ,X

. When σ2

is unknown, we construct a t -confidence using S 2 =

∑

e 2
i

n −2
. We therefore make a confidence interval

with critical values

β̂1± t1−α/2,n−2

s 2

p

SX ,X

Note our assumption of normality of errors.

Clarification SX ,X =
∑

(xi − x )2 and SX ,Y =
∑

(xi − x )(yi − y ).

Recall, the p-value can be calculated as p =P (Z ≥ |z |) or p =P (T ≥ |t |)where z , t are the calculated
test statistics. The p-value is the probability of obtaining a sample that provides strong evidence
against the hypothesized value of H0 :β1, set by thresholdα. α is the probability of making a type one
error with repeated sampling.
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Example 4.
∑

xi = 4035,
∑

yi = 4041,
∑

e 2
i = 4753.125,

∑

x 2
i = 1005535,

∑

xi yi = 864910, t0.975,18 =
2.10.
We need to calculate β̂1, s ,SX ,X from this information; recall β̂1 ± t1−α/2,n−2

s
p

SX ,X

. The interval be-

comes (0.18121, 0.33728). Verify as homework.

Do exercises from Montgomery (unassigned, do by chapter) and Sheather. Problems are similar to
this, and this will appear on the midterm.

Properties of β0

The conditional expectation of β0 | X . Since β̂0 = y − β̂1 x . Using this,

E (β̂0 | X = xi ) =

∑

E (yi | X = xi )
n

−β1 x =
�

nβ0+nβ1 x

n

�

−β1 x =β0

Therefore β̂0 is an unbiased estimator of β0. Now for the variance, (minor abuse of notation)

V (β̂0 | X = xi ) =V (o l y − β̂1 x | X = xi ) =V (y | xi ) + x 2V (β̂1 | xi )−2x Cov(y , β̂1 | xi )

Calculating each term separately,

V (y | X = xi ) =V

�∑

yi

n
| X = xi

�

=

∑

σ2

n 2
=
σ2

n

To calculate covariance term, we use substitutions involving β̂1 =
∑

ci yi with ci defined before

Cov(y , β̂1 | X = xi ) =Cov

�∑

i yi

n
,
∑

ci yi | X = xi

�

=
1

n

∑

i

Cov(yi , ci yi | X = xi )

Recall Cov(X , a Y ) = aCov(X , Y ). Also, given a particular xi , ci is a constant.

=
1

n

∑

i

ci Cov(yi , yi | X = xi ) =
1

n

∑

i

ci V (yi | X = xi ) =
1

n

∑

i

ciσ
2 = 0

From last section, V (β̂1 | xi ) = x 2 σ2

SX ,X
. Therefore

V (β̂0 | X = xi ) =σ
2

�

1

n
+

x 2

SX ,X

�

, and β̂0 | X = xi ∼N

�

β0,σ2

�

1

n
+

x 2

SX ,X

��

Therefore the (1−α) confidence for β0 is

β̂0±Z1−α/2σ

√

√

√ 1

n
+

x 2

SX ,X

(fill in whenσ2 is unknown )
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Confidence interval for the regression line

Denote x ∗, y ∗ as an observation not currently in the sample. We use the model built with the current
observations to see how far y ∗ observation can vary. It can easily be shown that

E ( ŷ ∗ | X = x ∗) =β0+β1 x ∗

Where X = x ∗ new observation, y ∗ unknown. As well, ŷ ∗ is the predicted value of y ∗ paired with x ∗.
Often, we are interested in calculating the variance of E (Y | X = x ∗) = ŷ ∗ | X = x ∗ and confidence
interval for E (Y | X = x ∗). That is, calculating the variance and confidence of the regression line at
each point. Note E ( ŷ ∗ | X = x ∗) = β0 + β1 x ∗ = E (Y | X = x ∗) implies the sample regression is an
unbiased estimator of the true Linear relationship between X , Y . The variance can be calculated as

V ( ŷ ∗ | X = x ∗) =V (β̂0+ β̂1 x ∗) =V (−y + β̂1(x
∗− x ))

=V (y ) + (x ∗− x )2V (β̂1) =
σ2

n
+
σ2(x ∗− x )2

SX ,X

=σ2

�

1

n
+
(x ∗− x )2

SX ,X

�

This is interpreted as the variance of the true location of the regression line at X = x ∗. Note variance
increases quadratically as x ∗ moves further from x .

Prediction error and interval

Assuming we fit a regression line between X , Y with some sample. If a new data point X = x ∗ is given,
our predicted ŷ ∗ lies exactly on the line in the model we have fitted, but y ∗ associated with x ∗ may
deviate from the line. How much does this y vary? y ∗− ŷ ∗ is called the prediction error for X = x ∗.
We calculate its expectation and variance.

For expectation, the ∗ is redundant, so we write E (y − ŷ | X = x ∗). We can easily show this is 0 since
y − ŷ = 0. Therefore

V (y ∗− ŷ ∗ | X = x ∗) =V (y − ŷ | X = x ∗) =σ2

�

1+
1

n
+
(x ∗− x )2

SX ,X

�

We just add the variance of y and variance of ŷ by expansion of variance and since Cov( ŷ , y ) = 0. The
observation y is independent of the previous sample by assumption. The prediction interval is built
in the same way as before using t distribution. The prediction interval is how much we expect the
true value to deviate from the regression line.
R simulation:
The confidence interval is for the regression line. The prediction interval is for a new predicted value
given x ∗; how far y ∗ can deviate from the predicted ŷ ∗.

Example 5. Calculate summary measures for the production data (in slides hw)

May 16: Lecture 3

Clarification In the derivations from last class, we used

Cov

�∑

Yi

n
,
∑

ci yi | X = xi

�

=
1

n

∑

Cov(yi , ci yi | X = xi )

10
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since Cov(Yi , Yj ) = 0 by independence of Yi , Yj .

Understand theory and problem solving procedure for midterms. Data analysis will mostly be with
R.

Assignment Task 1

The purpose of the assignment is using R for inference of parameters given simulated data. Use your
student id as a seed. After data is generated, run the LM model. Repeating this procedure, get sam-
pling distribution for β̂i ,σ2, and compare these to true variances.

Analysis of variance (ANOVA)

So far we have discussed inference about specific parameters, and hypothesis testing for their true
values. For example, if we fail to reject H0 : β1 = 0, then there is no linear relationship between
X , Y . In this case, Y = β0 + ε, V (Y ) = V (ε) = σ2, so ε explains all the variance of Y . Usually,
V (Y ) = β 2

1 V (X ) +σ2, since X ⊥ ε. Therefore when the above holds, part of the variance is given
by V (X ). If most of the variation in Y is explained by X , then predictions are very accurate. We dis-
cuss this in ANOVA.

In the slides, points that are less scattered about the regression line have more of their variance ex-
plained by X .

As the residual variance σ2 increases, the variation of Y is less explained by X . This increases pre-
diction error. We want to answer how well the regression line might explain the variation we observe
in the responses. ANOVA is another way of testing the significance of the regression line. The total
varation of Y is explained by the total sum of squares, the numerator of sY

SST =
∑

(yi − y )2

This can be decomposed by
∑

(yi − y )2 =
∑

(yi − ŷi + ŷi − y )2 =
∑

(yi − ŷi )
2+

∑

( ŷi − y )2+2
∑

(yi − ŷi )( ŷi − y )

Where the third term becomes
∑

(yi − ŷi )( ŷi − y ) =
∑

( ŷi (yi − ŷi )− y (yi − ŷi )) =
∑

ŷi ei − y
∑

ei = 0

Since
∑

ei = 0 and
∑

xi ei = 0 by the second normal equation, which gives
∑

ŷi ei = 0. Hint:
∑

(β0 +
β1 xi )ei =β0

∑

ei +β1

∑

xi ei . Therefore the total variation of Y can be divided into

∑

(yi − y )2 =
∑

(yi − ŷi )
2+

∑

( ŷi − y )2

The term on the left is the residual sum square, (n − 2)s 2. The second term explains the variance in
ŷi , or the variation in fitted values from the regression. We may easily show

∑ ŷi
n = y . The second

term on the right is the regression sum squared. The total variation in Y has been decomposed to
come from the regression line, and from random errors.

11
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Degrees of Freedom. This is the number of summed square normals. The proof for (n−1)s 2

σ2 ∼ χ2
n−1

shows where one of the ‘standard normal squares’ are lost. (s 2 is sample variance). For each param-
eter we fix, we lose a degree of freedom. When y is fixed, we are free to have n − 1 values, and are
forced to choose one to get the fixed y . That is, yn , the n-th observation is fixed for a fixed y . This is
why sample variance,

∑

(yi − y )2/n −1, uses n −1 degrees of freedom.

In the above SST, the RSS
∑

(yi − ŷi )2 has n − 2 degrees of freedom since ŷi = β̂0 + β̂1 xi uses two
estimated parameters. Since

∑

(yi − y )2 has n −1 degrees of freedom, then the SSr e g

∑

( ŷi − y )2 must
have 1 degree of freedom. This follows since the sum depends only on β1 given fixed xi :

∑

( ŷi − y )2 =
∑

(β̂0+ β̂1 xi − y 2) =
∑

(y − β̂1 x + β̂1 xi − y 2) =
∑

β̂ 2
1 (xi − x )2

We need degrees of freedom in order to test hypothesis. We will later show

SSr e g

σ2
∼χ2

1 ,
RSS

σ2
∼χ2

n−2

Under H0 : β0 = 0 then F0 ∼ F1,n−2. We want SSr e g as close to the SST as possible. The F-test here
detects how close SSr e g is to TSS. The closer it is the bigger the value of F0. We can show t 2

n−2 = F1,n−2.
We can also show

E (SSr e g ) =σ
2+SX ,Xβ

2
1

So when β1 = 0, the regression sum squared have variance equal toσ2. Below is an ANOVA table:

Sources of Variation Df Sum Sq Mean Sq F value Pr(>F)

Regression 1 SSr e g M Sr e g =
SSr e g

1 F0 =
M Sr e g

M RSS etc
Residuals n-2 RSS M RSSr e g =

RSS
n−2

Total n-1 SST

In general, the F-test measures whether the means of two groups measure significantly. The F statis-
tic is the ratio of explained variance (regression model attributes to V (X )) to unexplained variance
(variance of ei ). Under the null, our data reflects the intercept only model Y =β0+ε, and we test the
departure from this.

The Coefficient of Determination

Another measure to assess whether the regression line explains enough of the variability in the re-
sponse is the coefficient of determination, R 2. This gives the proportion of the total sample variabil-
ity in the response that has been explained by the regression model.

R 2 =
SSr e g

SST
or 1−R 2 =

RSS

SST

Note 0≤R 2 ≤ 1. If R 2 is close to 1, it is an important predictor of Y . If it is close to 0, then it offers little
predictive power for Y . In simple linear regression,ρ2 =R 2 whereρ is Pearson corelation coefficient.

Categorical predictors

So far we have required X to be continuous. However, X could be categorical. (X smoking status vs.
Y blood pressure). Here the predictor is binary and the output is continuous. How would we test if

12
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the mean blood pressure varies between these groups?

We did this in STA261 with a two-sample t-test, and by homoescadicity we do one with equal variance.
We may also use regression, by using dummy variables which are indicator variables. Setting 0 for
non-smokers, 1 for smokers,

E (Y | X = 0) =β0, E (Y | X = 1) =β0+β1

Using ANOVA this is essentially a t-test. F1,n−2 ∼ t 2
n−1 so by squaring the t statistic we get F statistic;

a significant F statistic indicate the change in means given by β1 is significant. Therefore using hy-
pothesis test with ANOVA for β1 = 0, we get a test for differing means.

The ‘slope’ becomes the change in average. We can say β1 reflects the average difference between
two groups. The slope provides the magnitude of the difference, while the hypothesis test tells us
whether the difference is statistically significant.

With categorical variables, R 2 may be low but the test will give significance.

Multiple Linear Regression

So far we have only had one predictor X , but we generalize to X1, . . . , Xn . That is

Y =β0+β1X1+ . . .+βp Xp +ε

This implies Y is related to X1, . . . Xp linearly. However, the predictor produces a p -dimensional sub-
space instead of a line. See image in ‘Elements of Statistical Learning 2e’; with Y regressed on X1, X2

we get a regression plane.

The conditional mean of Y is given by E (Y | X1, . . . , Xp ) =β0+β1X1+. . .+βp Xp . For the sample dataset,

yi =β0+β1 xi ,1+ . . .+βp xp ,1+ ei

So we minimize RSS (β0, . . . ,βp ) =
∑

(yi −
∑p
β j xi j )2. Differentiating with respect to each β j ,

∂ RSS

∂ β0
=
∑

−2(yi −
p
∑

β j xi j )
∂ RSS

∂ β j

∑

−2(yi −
p
∑

β j xi j )xi j

Setting these to 0, we get p +1 normal equations in p +1 unknowns, giving us a unique solution and
therefore minimum, since it is the minimum for each β j .

Matrix Notation

In order to simplify notation we use matrices. For this we write

Y=Xβ +ε

Y is an n ×1 vector, X is an n × (p +1)matrix, with the first column being a vector of 1s. β is (p +1)×1
vector, ε is n ×1 vector.

13
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We denote the transpose of matrix A as A′. If A is a square matrix with A = A′ then it is symmetric
(corrseponds to self adjoint operator). If A is invertible, we denote its inverse with A−1. A matrix is
orthogonal if A−1 =A′; column vectors are orthogonal. An idempotent matrix satisfies A2 =A. Some
important properties are that

(A+B)′ =A′+B′ and (AB)′ =B′A′

Example 6. The projection matrix P :Rn →Rn of rank p ≤ n onto a subspace is a square matrix that
is symmetric and idempotent.

May 18: Lecture 4

More properties

Definition 8. If Y = (Y1, . . . , Yn ) is a random vector, then E (Y ) = (E (Y1), . . . , E (Yn )). The covariance
matrix of Y is denoted

V (Y ) =









V (Y1) Cov(Y1, Y2) . . . Cov(Y1, Yn )
Cov(Y2, Y1) V (Y2) . . . Cov(Y2, Yn )

...
...

...
Cov(Yn , Y1) Cov(Yn , Y2) . . . V (Yn )









That is each entry ai , j =Cov(Yi , Yj ). It is created by Cov{(Y −E (Y ))(Y −E (Y ))′}, the outer product.

Proposition 5. If A is a constant matrix, X a random vector, then E (AX ) = AE (X )

Proposition 6. If b is a constant vector, Y a random vector, then V (b ′Y ) = b ′V (Y )b .

Multiple Linear Regression Continued

Above, we wrote Y=Xβ +ε, that is yi =β0+β1 xi ,1+ . . .+βp xi ,p +εi in matrix form. Explicitly,









y1

y2
...

yn









=









1 x1,1 x1,2 . . . x1,p

1 x2,1 x2,2 . . . x2,p
...

...
...

1 xn ,1 xn ,2 . . . xn ,p

















β0

β1
...
βp









+









ε1

ε2
...
εn









Y,ε ∈Rn ,β ∈Rp+1, and X is n × (p +1) dimensional.

As before, we would like to minimize
∑n

i e 2
i given values in X . This evaluates to the scalar

RSS (β ) =
n
∑

i

e 2
i = e ′e = (Y −X β )′(Y −X β ) = Y ′Y −2Y ′X β +β ′X ′X β

Where Y ′X β = β ′X ′Y since the transpose of a scalar is the same scalar. Note RSS :Rp+1→RDiffer-
entiating with respect to β ,

∂ RSS

∂ β
=
∂

∂ β
(Y ′Y −2β ′X ′Y +β ′X ′X β ) =−2X ′Y +2X ′X β

14
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Setting this to 0, we see β̂ = (X ′X )−1X ′Y . In the case of simple LR,

X =





1 x1
...

...
1 xn



 , Y =





y1
...

yn



 =⇒ X ′X =

�

n
∑

xi
∑

xi

∑

x 2
i

�

= n

�

1 x
x 1

n

∑

x 2
i

�

We can compute det X ′X = n 2 ·
�

1

n

∑

x 2
i − x 2

�

= n ·
∑

(xi − x )2 = n ·SX ,X . Therefore

(X ′X )−1 =









∑

x 2
i

n ·SX ,X
−

x

SX ,X

−
x

SX ,X

1

SX ,X









Multiplying byσ2, we see this is the covariance matrix for β̂0, β̂1; Cov(β̂0, β̂1) =
−σ2 x

SX ,X
. Important for

midterm!

Definition 9. The projection of Y on X is given by Ŷ = X β̂ = X (X ′X )−1X ′Y =H Y . We call H the hat
or projection matrix. Note it is n ×n , idempotent, and symmetric!

We let e = Y − Ŷ = Y −X (X ′X )−1X ′Y = (I −H )Y

Proposition 7. H and I −H are both idempotent.

Note that H X = X ; this is easily checked by tracing definition and cancelling inverses. We can par-
tition the first k and last p + 1− k columns of X into matrix [X1, X2]. Then H X = [H X1, H X2] = X =
[X1, X2]. As well, tr(H ) = p +1 and dim rangeH = p +1.

Assumptions in Multiple LR

E (Y | X ) = X ·β . Linearity, independence, homoescadicity, normality hold as assumptions for our
model (same as before). We assume ε ∼ N (0,σ2I ). Then Y | X ∼ N (X β ,σ2I ). Now we discuss the
distribution of β̂ .

E (β̂ | X ) = E ((X ′X )−1X ′Y | X ) = (X ′X )−1X ′X β =β

so the estimator is consistent. For the variance, we carry out adjoints as in previous property

V (β̂ | X ) =V ((X ′X )−1X ′Y | X ) = (X ′X )−1X ′σ2I X (X ′X )−1 = (X ′X )−1σ2

This is just the covariance matrix of β̂ ! Look back to our example above. That is

C = (X ′X )−1 =⇒ ci j =σ
2Cov(βi ,β j )

Least squares estimates are the best linear unbiased estimators according to the Gauss-Markov The-
orem (which is stated later). The following assumptions are required for the theorem: (1) the errors
εi are independent, (2) E (ε) = 0, (3) V (ε) =σ2. Note normality is not assumed.

As in simple LR, the β̂ j are normally distributed; β̂ j ∼N (β j ,σ2c j , j ). We can test hypotheses for β j in

the usual way. Given HO :β 0
j , then we can calculate Z =

β̂ j−β0
jp

c j , jσ
and use a z-test.
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May 30: Lecture 5

Term Test

Higher than expected. Expect lots of multiple linear regression questions in the final, like Question 5
on TT. Practice from Chapter 3 in Montgomery.

ANOVA for Multiple Linear Regression

Expectation of RSS, sample variance

The RSS for MLR is
∑

(yi − ŷi ) = e ′e . Recall e = (I −H )y since Y − Ŷ = Y −H Y = (I −H )Y , where
H = X (X ′X )−1X ′. Therefore

RSS = y ′[I −X (X ′X )−1X ′]y = y ′[I −H ]y

In MLR, we have p + 1 parameters to estimate so reasoning with degrees of freedom, the sample

variance s 2 =
RSS

n −p −1
=

∑

e 2
i

n −p −1
. We show this by first calculating expectation of RSS by proving a

theorem, and substituting A = I−H . Please see last lecture for properties of expectation and variance.

Theorem 2. If y is n × 1 random vector, with mean vector µ and covariance matrix V , and A is a
matrix of constants, then

E (y ′Ay ) = tr(AV ) +µ′Aµ

Proof. We multiply and use linearity of expectation, expansion of covariance

E (RSS ) = E [Y ′AY ] = E

 

n
∑

i

n
∑

j

ai , j yi yj

!

=
n
∑

i

n
∑

j

ai , j E
�

yi yj

�

Expanding with covariance, and with (σi , j ) =C o v (Y ) =V

=
n
∑

i

n
∑

j

ai , j

�

Cov(yi , yj ) +E (yi )E (yj )
�

=
n
∑

i

n
∑

j

ai , jσi , j +
n
∑

i

n
∑

j

ai , jµiµ j

= tr(AV ) +µ′Aµ

Proposition 8. E (RSS ) = (n −p −1)σ2+µ′Aµwhere A = I −H

Proof. Using the above, Set A = I −H , V =σ2I , then

tr(AV ) = tr[(I −H )σ2I ] =σ2tr(I −H )

Expanding, tr(I −H ) = tr(In )− tr(H ) = n − p − 1; where tr(H ) = tr(X (X ′X )−1X ′) = tr(X ′X (X ′X )−1) =
trIp+1 = p +1 since (X ′X )−1 is (p +1)× (p +1).

This will be on the final!

Proposition 9. µ′Aµ= 0, where A = I −H , µ= X β .
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Proof.

µ′Aµ= (X β )′(I −X (X ′X )−1X ′)X β =β ′X ′X β −β ′X ′X (X ′X )−1X ′X β

=β ′X ′X β −β ′X ′X ′β
= 0

Proposition 10. E (RSS ) = (n −p −1)σ2

This follows from substitution into the past 3 statements. The following proposition also easily fol-
lows.

Proposition 11. E (M RSS ) = E ( RSS
n−p−1 ) =σ

2

RSS and SSr e g for Multiple LR

By Gauss-Markov assumptions, εi ∼ N (0,σ2), and so εi
σ ∼ N (0, 1) by Z -score. Also this gives 1

σε ∼
N (0, I ). Note 1

e = Y −X β̂ = Y −H Y = AY

Our underlying model is assumed to be Y = X β + ε, so therefore Ay = AX β + Aε. Expanding and
since H X = X , AX β = (I −H )X β = 0 so e = Ay = Aε. That is our observed errors are the difference
ε−H ε; the error vector minus its projection. This proves the following fact

Fact 1. e = (I −H )ε.

We also showed A = I −H is symmetric and idempotent; this implies

A′A = A2 = A

Then
RSS = (y − ŷ )′(y − ŷ ) = e ′e = ε′A′Aε= εAε=σ2Z ′AZ

This implies
RSS

σ2
= Z ′AZ .

Theorem 3. If A is a symmetric and idempotent n ×n matrix and Z ∼N (0, I ), then Z ′AZ ∼χ2(tr(A))

No proof, try it yourself for practice. However, notice Z ′Z ∼χ2(n ) and use a nice basis for a projection
operator. Recall A = I −H so this gives

RSS

σ2
∼χ2(tr(A)) =χ2(n −p −1)

Proposition 12. y = (1′1)−11′y .

Therefore we may rewrite the regression sum of squares involving y and H .

Proposition 13. SSr e g = y ′[H −1(1′1)−11′]y
1The slides use Q = I −H , but we use A as before.
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Proof. First, write

SSr e g = [ ŷ −1y ]′[ ŷ −1y ] = y ′[H −1(1′1)−11]′[H −1(1′1)−11′]y

Now we show [H −1(1′1)−11]′[H −1(1′1)−11′] =H −1(1′1)−11′. Expanding,

[H −1(1′1)−11′]′[H −1(1′1)−11′] =H 2−1(1′1)−11′H −H 1(1′1)−11′+1(1′1)−11′1(1′1)−11′

Note since H X = X and 1 is a column in X , then H ·1= 1, and taking transposes a similar result holds.

=H −1(1′1)−11′−1(1′1)−11′+1(1′1)−11′

=H −1(1′1)−11′

This gives us a way to express the regression sum squared using y , H and a constant matrix. We use
this to show that the regression sum squared, and residual sum squared from above are independent.

Proposition 14. The regression sum of squares SSr e g = y ′[H−1(1′1)−11′]y and residual sum of squares
RSS = y ′[I −H ]y are independent.

We do this by computing [H −1(1′1)−11′]σ2I [I −X (X ′X )−1X ′] =σ2(H −B )(I −H ) = 0 as an exercise.

ANOVA Table for MLR

Sources of Variation Df Sum Sq Mean Sq F value Pr(>F)

Regression p SSr e g M Sr e g =
SSr e g

p F0 =
M Sr e g

M RSS etc
Residuals n −p −1 RSS M RSSr e g =

RSS
n−p−1

Total n −1 SST

By independence, and since SSr e g ∼χ2(p ), RSS ∼χ2(n −p −1), then we have

SSr e g /p

RSS/n −p −1
∼ F (p , n −p −1)

We may perform an F test with the null hypothesis

H0 :β0 =β1 = . . .=βp = 0 and H1 :βi ̸= 0 for some i

Significance in the statistic gives evidence for at least one predictor being valid; at least some X i ex-
plains a significant proportion of the variance in Y .

Recall that the coefficient of determination R 2 = SSr e g

SST . As the number of variables increases, so does
R 2, since more predictors decrease RSS .

RSS =
∑

(yi −β0−β1 xi − . . .−βp xp )
2

where an additional predictor will decrease each term in the sum. Note when we have n predictors
for the sample size, we have a perfect fit and R 2 = 1. Geometrically, projection plane induced by
H = X (X ′X )−1X ′ is the whole space. In short, we get many predictors but none of them good and we
overfit. We account for the number of predictors using an adjusted R 2

R 2
a d j = 1−

RSS/n −p −1

SST /n −1

The interpretation is exactly the same, but is a more robust statistic in multiple linear regression due
to the previous issues.
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Partial F-test

One of the most important tests in an MLR is the partial F-test. In ANOVA we do a test for the full
model; we identify whether there is any significant predictor. The partial F-test identifies whether
a subset of predictors still significantly predicts the response. However, the null hypothesis is that
the reduced model is better than the full model. Remember that we consider the ratio of the error
sum squared; a significant increase in errors after removing predictors indicates a worse model, and
larger F -statistic.

Suppose we have two models. The full Y =β0+β1X1+ . . .+βp Xp +ε. We test whether the model still
explains the response when we remove the first k predictors; we consider the reduced Y =βk+1Xk+1+
. . .+βp Xp +ε. First, write

RSS (reduced)−RSS (full) = y ′[H −H1]y

Without proof, but similar to for RSS before,

RSS (β2 |β1)/σ
2 = (RSS (reduced)−RSS (full))/σ2 ∼χ2(k )

Thus
RSS (β2 |β1)/σ2

RSS (full)/n −p −1
∼ F (k , n −p −1)

We test
H0 : reduced model is better fit, H1 : full model is better fit

A large F value suggests that the reduced model explains much less variability than the full model,
and fits the data worse. This implies we should be rejecting the null, so predictors cannot be removed
from the model. Small values imply that both reduced and full models explain a similar amount of
variability, so the additional predictors may not be necessary.

Opposite test hypotheses occur, since we test ratios of residuals; high ratio means large residuals in
reduced model.

Diagnostic checking

The three assumptions of linear regression are (1) linearity, (2) homoscedasticity, (3) independence
of the errors, with normality also being one. One of the most important tasks is checking the as-
sumptions in our data. This is called diagnostic checking. Anscombe’s datasets give an example of
why checking these assumptions is important; the models give the same predictors but differ greatly
in their structure.

Suppose we fit Y =β0+β1X +ε. The fitted regression ŷ = β̂0+β̂1X produces the estimate for E (Y | X ).
e is an unbiased estimate for ε. A good way to check is to plot the residuals, there should be no
pattern and should be a random scatter plot. We can also plot residuals against ŷ as in multiple
LR. Assumptions hold if there is no pattern. Other relationships, like a quadratic one, will become
apparent in the residuals. The following steps are best practice:

1. Assess model assumptions using residual plot. There should be no pattern.

2. Determine which data points have x -values with large effect on Y . (Leverage points.)
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3. Determine which points are outliers in their responses.

4. Assess the influence of bad leverage points on the fitted model.

5. Examine whether constant error variance assumption is reasonable. (Do residuals vary with
X ?)

6. If data is collected over prolonged period of time, see if it is corelated with time.

7. For small sample size or prediction intervals, assess whether normality of errors is reasonable.
(Normality tests?)

If this is successful, then our assumptions are valid and our predictors can be trusted. If the assump-
tions fail, our analysis is invalid.

June 1: Lecture 6

Leverage Points

Leverage points are observations that are highly influential on the fitted regression line. Leverage
points occur due to an a value of X = x far from x . The corresponding Y = y greatly influences the
line for a given X = x . Such a pair x , y that greatly changes the least square estimates is a bad leverage
point. For extreme x , if y is close to the fitted line it is a good leverage point, but if it is far it is a bad
one. An outlier is an observation that takes an extreme y value for an x that is not far from x .

Numerical Summary

Recall

β̂0 = y − β̂1 x β̂1 =
n
∑

j

x j − x

SX ,X
yj =

n
∑

j

c j yj

Then

ŷi = β̂0+ β̂1 xi = y + β̂1(xi − x ) =
n
∑

j

�

yj

n
+
(x j − x )(xi − x )

SX ,X
yj

�

=
n
∑

j

�

1

n
+
(x j − x )(xi − x )

SX ,X

�

yj =
n
∑

j

hi , j yj

This hi , j is the entry in the hat matrix H . When i = j , then hi ,i =
1

n
+
(xi − x )2

SX ,X
. We show

∑n
j hi , j = 1.

Further, we can write ŷi = hi ,i yi +
∑

j ̸=i hi , j yj . If we have hi ,i ≈ 1, then ŷi is close to yi , and it is a lever-

age point. It can also be shown mean(hi ,i ) =
2
n (by definition). Using this, a popular way to identify a

leverage point is to check if hi ,i >
4
n , or twice the mean. This is a useful rule of thumb.

Leverage is concerned with a single observation far from the rest of the data in the x -space. We have
two ways of dealing with bad leverage points. We can (1) remove the data point or (2) fit a different
regression model. A quadratic or logarithmic transformation of X may be needed.
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Standardized Residuals and Influential Points

In the real world, often people work in sensitivity analysis. This is essentially identifying influential
points, which we discuss.

Residuals reflect the difference between observed and predicted response. We might want to use
them to measure the influence a leverage point will have on the estimated line. It turns out that the
estimated residuals do not always have the same variance; V (ei ) is not the same for all i . Actually, we
find V (ei ) =σ2(1−hi ,i ). We prove this.

Proposition 15.
∑n

j=1 h 2
i , j = hi ,i

Proof.

n
∑

j=1

h 2
i , j =

n
∑

j=1

�

1

n
+
(x j − x )(xi − x )

SX ,X

�2

=
n
∑

j=1

�

1

n 2
+

2

n

(x j − x )(xi − x )

SX ,X
+
(x j − x )2(xi − x )2

S 2
X ,X

�

=
1

n
+

2

n

∑n
j=1(x j − x )(xi − x )

SX ,X
+

∑n
j=1(x j − x )2(xi − x )2

S 2
X ,X

=
1

n
+
(xi − x )2

SX ,X
= hi ,i

We use this in the last steps to prove the following.

Proposition 16. V (ei ) =σ2(1−hi ,i )

Proof.

V (ei ) =V
�

yi (1−hi ,i ) +
∑

hi . j yj

�

= (1−hi ,i )
2V (yi ) +

∑

i ̸= j

h 2
i , j V (yj )

=σ2

 

(1−hi ,i )
2+

∑

i ̸= j

h 2
i , j

!

=σ2

�

(1−hi ,i )
2+

n
∑

i

h 2
i , j −h 2

i ,i

�

=σ2
�

1−2hi ,i +h 2
i ,i +hi ,i −h 2

i ,i

�

=σ2(1−hi ,i )

We can now discuss the variation in each residual using our hat matrix. We see that the estimated
residuals are not actually independent, event though we assume that the errors are. If ei were inde-
pendent, we would expect V a r (ei ) =σ2. However, we have an extra term of −σ2hi ,i , which indicates
the variance of a residual depends on its distance from x . Residuals are correlated, but the correla-
tion is small.

This makes it difficult to know whether the patterns we see are due to model violations or variance
of the residuals. To overcome this issue, we standardize the residuals by dividing by their standard
error. By prop. 16,

se(ei ) = s
Æ

1−hi ,i =⇒ ri =
ei

s
p

1−hi ,i
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Where s 2 =

∑

e 2
i

n −2
. Note ri ∼ t (n − 2), so these are also called ‘studentized’ residuals. If high leverage

points exist, it is more important to look at plots of standardized residuals; we can just check if ri ∈
[−2, 2] or [−4, 4]. It is expected that the variance of ri will be larger for center values of X , and smaller
for remote values. Then looking at the plot, we can identify whether a residual corresponds to an
outlier; we plot standardizes residual against dependent variable.

Example 7. In our Treasury Bond example, we identify three bad leverage points by plotting studen-
tized residual against dependent variable. Viewing these in detail, we find that they are ‘flower bonds’,
so we remove them from the analysis. The remaining points are more or less linear, but a slight bend
may give evidence that it is a logarithmic relationship.

Cook’s Distance

How can we quantify the influence a small number of observations on the regression line with a single
statistic? In 1977, Cook provided the following expression to calculate the influence of a single point
on the regression line.

Definition 10. The Cook’s distance for (xi , yi ) is given by

Di =
( ŷj (i )− ŷj )2

2s 2
=

r 2
i

2
·

hi

1−hi

where the subscript i references the predicted value from a model fit without (xi , yi ). Thus ŷj (i ) de-
notes the j th fitted value based on the fit when the i th observation is deleted from the fit.

A high Cook’s distance means the model is a bad fit for the i -th observation, since there is a large
residual or it sits far from the centre of the predictors. There are similar metrics in MLR which we
discuss later. The second expression is easier to work with since it does not require refitting of any

models. Large Cook’s distance means large ri or large hi ,i . We use the cutoff Di >
4

n −2
as a rough

cutoff guideline, but identifying unusual Di is most important.

Example 8. In the previous Treasury Bond example, the 3 unusual observations have a very high
Cook’s distance when plotted, and are valid to be removed.

Normality of the Errors

We need to assume εi is normally distributed to perform F , t , and Z tests, as well as construct con-
fidence intervals. We will verify the normality assumption using residual plots. First, we can show
∑

hi , j = 1 and
∑

x j hi , j = xi ,

Proposition 17. ei = εi −
∑n

j hi , jε j

Proof.

ei = yi − ŷi = yi −
n
∑

j

hi , j yj =β0+β1 xi +εi −
n
∑

j

hi , j (β0+β1 x j +ε j ) = εi −
n
∑

j

hi , jε j
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In small sample sizes, the second term may dominate, and the residuals may look normal even if the
εi are not. As n increases, the second term in the last equation has a smaller variance than the first
term, so the first term dominates the last equation. For large samples, the residuals can be used to
assess normality of the samples.

A common way to assess normality is via a QQ-plot; the studentized errors are plotted against their
quantiles. If the quantiles match that of a normal distribution, the plot is close to the y = x line, and
the normality assumption is valid. We must also check that the constant variance assumption is met;
we cannot use inferential tools if it is not true.

Variance stabilizing transformations

In the slides example, constant variances is violated. For inference, our prediction intervals depend
on X . A transformation of Y can stabilize the variance: make it not depend on X .

When we are counting events, as in the Slide 28 example, we typically fit a Poisson distribution. In a
Poisson distribution, the mean and variance are bothλ. Since in regression we model the conditional
mean E (Y | X ) = λX , we have also a conditional variance: λX changes by X , so should the variance.
The square root transformation can help in this situation.

Taking the function of a random variable, f (Y )≈ f (E (Y ))+ f ′(E (Y ))(Y −E (Y )). Taking the variance,
we get

V ( f (Y )) =
�

f ′(E (Y )
�2

V (Y )

since E (Y ) is a constant, and using variance properties. This way of approximating variance is called
the delta method. In the Poisson example, E (Y | X ) =V (Y | X ) =λ(x ). Letting f (Y ) =

p

(Y ), then

V (Y 0.5 | X ) =
�

0.5E (Y | X )−0.5
�2

V (Y | X ) =
�

1

2

�2

λ(x )−1λ(x ) =
1

4

which makes V ( f (Y ) | X ) constant. In the example, X , Y are both counts, so we perform the square
root transformation on both and keep the same units. The variance stabilizing transformation stabi-
lizes prediction error across the predictor variable. Our predictions may vary, but we keep the trans-
formed model. We may not always get count data, so depending on the relationship between variance
and mean we might use different transformations:

Relationship Transformation
σ2∝ E (Y )(1−E (Y )) y ∗ = sin−1(py )

σ2∝ E (Y )2 y ∗ = log y
σ2∝ E (Y )3 y ∗ = y −

1
2

σ2∝ E (Y )4 y ∗ = y −1

We can verify that the delta method is variance stabilizing. We need to make sure that interpretability
is not lost: in practice a transformation is chosen empirically. There is no exact rule about which
transformation is best for a set of data. Transformations of X are discussed later.
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June 6: Lecture 7

Assignment 2 Instructions

The idea is to create a regression model, and defend validity of the model using concepts learned
in class. We use the NHANES dataset, including demographic information. We do both inference
and prediction using this regression model; create training and test sets. We create a cross sectional
dataset, where each individual is considered independent. We will elaborate about the theory next
Monday.

Word limit 1000 excluding captions and figures. Maximum 5 tables and figures. Up to 3 additional
tables and figure should be included in an appendix if they are relevant to the analysis. Due June 18.

Transformation for Non-Linearity

The final thing we discuss in simple linear regression are transformations for non-linearity. We have
seen these before in variance stabilizations. These transformations are also applied when there is
non-linearity so that we get some linear relationship after transformation. For example, consider the
true model

Y =β0X β1

Then transforming Y ⋆ = log(Y ) and X ⋆ = log(X ) (natural log) then

Y ⋆ = logβ0+β1X ⋆

Then Y ⋆ is linear with the new transformed X ⋆. We can now use least squares to fit a relationship
between Y ⋆, X ⋆, and recover β0 with exp.

Example 9. In slide example, maximum salary regressed on score is a good linear fit, but the stan-
dardized residuals show a quadratic curve-like relationship; there is an assumption-violating pattern.
Assuming the underlying model is Y =β0X β1 , we fit a linear relationship, and find that the new stan-
dardized residuals show some pattern.

The Box-Cox Transformation

To remain interpretable, the scaling of X , Y must be the same. In order to best get rid of non-linearity,
we use the Box-Cox transformation.

We have often seen some kind of power transformation on Y :

ψ(y ,λ) = y λ

instead of y . To determine the most appropriate value ofλ, we use maximum likelihood estimation.
We assumed Y =β0+β1X +ε, ε∼N (0,σ2) so that

Y | X ∼N (β0+β1X ,σ2)

Therefore

L (β0,β1,σ2) =
n
∏

i

1
p

2πσ2
exp

�

−
1

2

(yi −β0−β1 xi )2

σ2

�

=
�

2πσ2
�− n

2 exp
�

−
1

2σ2
RSS

�
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Therefore maximum likelihood estimate is the same as when RSS is minimized; the estimate for
β0,β1 we first developed. For the Box-Cox transformation, we fit the model parametersβ0,β1 to trans-
formed RSS :

RSS =
n
∑

i

(ψ(yi ,λ)−β0−β1 xi )
2

For this expression, we minimize the fitted RSS over all possible λ numerically; since we cannot do
so analytically. In other words, for someλ, fitβ0,β1 so that RSS is minimized, and take this minimum
over all possible λ. Problems arise when λ= 0, where the response becomes constant. We therefore

useψ(y ,λ) = y λ−1
λ , since limλ→0

y λ−1
λ = log y . However, small change of λ greatly changesψ, so we set

ψ(y ,λ) =







gm(Y )λ−1 y λ−1

λ
λ ̸= 0

gm(Y ) log(Y ) λ= 0

where g m (Y ) = exp
�

1
n

∑n
i log(Yi )

�

. This is the Box-Cox transformation. Adding geometric mean is
not always necessary. We can also tranform the predictor variable:

ψ(X ,λ) =







X λ−1

λ
λ ̸= 0

log(X ) λ= 0

That is, fit E (Y | X ) =α0+α1ψ(X ,λ), and find maximum of maximized MLE for all possibleλ. Note we
do not multiply by G.M., since we do not need to stabilize X . We now haveψ(Y ,λY ),ψ(X ,λX )where
we maximized MLE for these values ofλy , λX . We can replace both X , Y withψ(Y ,λY ),ψ(X ,λX ), and
maximize, to choose the best transformation. This is a nightmare for interpretation though. In the
example, λY = 0, λX = 0.5 seems to create the best fit.

Although these transformations are terrible for interpretability, they increase the predictive power
of the model. The problem of interpretability vs. predictability is a major one in data science. In a
predictive model, we use these transformations since they help correct modelling assumptions and
improve predictive power. Usually log or square root transformations correct a skew in either vari-
able, and the choice depends on the data.

Diagnostics in Multiple Linear Regression

Checking the model assumptions is actually simpler in MLR than in SLR.

Leverage Points

A leverage point is one that lies far from the rest of the observations with respect to its predictor
values. The least squares procedure fits a plane that minimizes the distance between each point
and this plane. While it does not mean that a leverage point will be influential to the model fit, this
potential to influence the line is why we identify these points.
Recall that the projection of Y onto X ,

Ŷ = X β̂ = X (X ′X )−1X ′Y =H Y
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where H is an n×n matrix with rank p+1, where p+1 is the number ofβi . We denote H = (hi , j )1≤i , j≤n .
Then

Ŷ =H Y =⇒ ŷi =
n
∑

j

= hi , j yj

If an observation is a leverage point, the fitted value is strongly attracted to the observed value. We
concern ourselves with the diagonal elements of the hat matrix hi ,i . Unlike simple LR, hi , j are not easy

to calculate, so we rely on software for the hat matrix. An observation is a leverage point if hi ,i > 2 p+1
n .

Example 10. model.full in R

Standardized Residuals

Recall e = (I −H )Y =⇒ ei = (1−hi ,i )yi −
∑

i ̸= j hi , j yj . We can standardize the residuals similar to SLR.
We can show V (ei ) = (1−hi ,i )σ2, so it is best to standardize when they have constant variance. We do
this by

ri =
ei

s
p

1−hi ,i

where s comes from the MLR version, s =

√

√ RSS

n −p −1
. Like in SLR, these can be used to detect outliers

and QQ-plot to test normality assumptions. However, it is difficult to test their relationship with the
predictors since there are many of them, so plots against individual predictors are used. Any pattern
shows that assumptions are violated.

Influential Observations

We saw already that we need to be concerned with leverage points and outliers. If both of these obser-
vations have the potential to influence the regression line, then we need a way to determine which
observations we should be concerned with. Such observations are influential observation for the
regression line. We quantify the amount of influence each observation has in three ways.

Definition 11. In MLR, the Cook’s distance is

Di =
(Ŷ(i )− Ŷ )′(Ŷ(i )− Ŷ )

(p +1)S 2
=

�

r 2
i

p +1

�

·
�

hi ,i

1−hi ,i

�

A point can be an influential observation if the model fits the i -th observation poorly, giving a large
Cook’s Distance. While the Cook’s distance looks at the effect of a single observation on all fitted
values, we can quantify the effect on its own fitted value. This is quantified with

Definition 12. The DFFITS statistic

D F F I T Si =
yi − ŷi (i )
q

S 2
(i )hi ,i

=

�

hi ,i

1−hi ,i

�
1
2 ei

s(i )
p

1−hi ,i

where ŷi (i ) is the predicted value for the observation i if it not included in the model.
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If the residual with the observation removed is very large, then it does not lie close to the fitted re-
gression. The equivalent expression looks similar to the Cook’s distance, but does not provide many
advantages compared to Cook’s distance. Cook’s distance is more important. With DFFITS, an ob-

servation is considered influential if |DFFITSi |> 2

√

√p +1

n
.

Another statistic for identifying influential points if the DF BETAS. It directly quantifies the effect of
the i -th observation on the least squares

Definition 13. The DF BETAS are calculated as

DFBETASi =
β̂ j − β̂ j (i )

q

S 2
(i )(X ′X )

−1
j , j

Here β j (i ) is the estimated coefficient for predictor j when i is not included in the data. This statistic
is calculated for all n observations. A large change in the predictors when observation i is removed
means the observation greatly influences the fit of the regression line. Typically the i -th observation

is influential if |DFBETASi |>
2
p

n
.

All of the above statistics may give different significant observations, but we should not disregard any
of them.

Non-Linearity

We have again assumed the relationship is linear. If the true relationship is non-linear: E (Y | X ) =
g (β0+β1X1+ . . .+βp Xp ) then we still use Box-Cox to transform X , Y . We can transform the response
Y , or transform both. To transform Y , we still use

ψ(y ,λ) =







gm(Y )λ−1 y λ−1

λ
λ ̸= 0

gm(Y ) log(Y ) λ= 0

where λ is chose by maximizing the MLE where yi is replaced withψ(yi ,λ).
Summary: in diagnostics we have leverage points or outliers, we calculate cooks distance, DFFITS, if
there is nonlinearity we can choose a transformation according to box-cox.

Corelated Predictors

In sum: What if X ′X is not invertible? When does this occur, and what do we do?

In Task 2 of A1, we saw that fitting an SLR to corelated predictors lead to biased sampling distribu-
tions of the predictor with smaller variance. Total corelation of X i , X j leads to linear dependence of
columns in X ′X , making it non-invertible, and so we cannot fit a model.

When predictors are corelated, then that affects their individual relationship with the outcome. Pre-
dictors could be weakly, moderately, or strongly correlated. If Corr ≈ 1, we cannot obtain a least
squares estimate. Even with moderate correlation, we might still have to be careful, since multicol-
inearity and non-full rank matrix may occur. This affects prediction etc.
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When X = [X1, . . . , Xp ] is the covariance matrix, if for some ti ,
∑

t j X j = 0 the columns are linearly de-
pendent; (X ′X )−1 is not invertible. But if corelations between predictors are very high, then det(X ′X )
will be close to 0 and issues may occur.

Assuming we have a linear model y =β1 x1+β2 x2+ε, it is not difficult to see

Example 11. Assuming we have a linear model y =β1 x1+β2 x2+ε, we see

X ′X β̂ = X ′y =⇒
�

1 r12

r21 1

��

β̂1

β̂2

�

=

�

r1y

r2y

�

where r12 =Corr(X1, X2)and r j ,y =Corr(X j , Y ). Thus det X ′X = 1−r 2
12. As r12→ 1 then this determinant

gets small, and X ′X becomes singular. Moreover, V (β̂ )→∞ since V (β̂ | X ) = (X ′X )−1σ2. So for high
r12, our confidence intervals become very wide and unreliable.

We cannot remove the extra linearly dependent variable; as we saw in the midterm, this creates bias
in the other predictor. Let’s assume C = (X ′X )−1 and V (β̂ j | X ) =σ2C j , j . When we have> 2 predictors,
it can be shown that

C j , j =
1

1−R 2
j

where R 2
j is the coefficient of multiple determination of X j ∼ X1 . . . Xn . C j , j is the variance inflation

factor. The first thing we check is VIF > 5, if so we deal with such variables separately or at least
address them.

June 8: Lecture 8

Handling Multicolinearity

To handle multicolinearity we can either collect more data, or re-specify the model. By removing one
of the correlated predictors, the effect of multicolinearity should be reduced. However, if the wrong
predictor is removed, then it may reduce the predictability of the model.

ANCOVA: Analysis of Covariance

We discussed dummy variables; if X = 0, 1 then

E (Y | X ) =β0+β1X =⇒ E (Y | X = 0) =β0, E (Y | X = 1) =β0+β1

What if we have multiple categorical predictors (age, sex, etc.)? Then we create multiple categorical
predictors, X1, X2 and fit the MLR model E (Y | X ) =β0+β1X1+β2X2. As a specific case,

E (Y | X1 = 0, X2 = 1) =β0+β2

In order to view the significance of each categorical predictor, we do ANOVA.When X1 is categorical,
X2 is continuous and we fit an MLR model, then

E (Y | X1 = 0, X2) =β0+β2X2, E (Y | X1 = 1, X2) =β0+β1+β2X2

We get two lines with the same slope, but the intercept changes with the categorical X1. Often X2 is
referred to as the effect. However, given a change in the categorical predictor, we may expect a more
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rapid increase in X2. I.e. smoking may cause blood pressure to increase more rapidly with age. Then
we have

E (Y | X1 = 0, X2) =β0+β2X2, E (Y | X1 = 1, X2) = (β0+β1) + ( β1,2
︸︷︷︸

interaction effect

+β2)X2

β1,2 is often called the interaction effect, or the difference in difference parameter, while the param-
eters β1,β2 are the main effects. Our underlying model is

E (Y | X1, X2) =β0+β1X1+β2X2+β1,2X1X2
︸ ︷︷ ︸

interaction

the regression lines are no longer parallel. Slopes should be interpreted separately for the categorical
X1.

Example 12. We look at the travel dataset in Slide 44. Given the categorical D for a cultural trip, or an
adventure trip, as age increases the categorical predictor gives opposite effects on the regression line.
I.e. the slope and intercepts change dramatically; cultural trips become more popular with age, and
opposite for adventure trips. Intepretation of β0 is average amount spent on adventure when age is
0, where adventure is set to 0 in the categorical variable.

Depending on the travel group that these belong to, there is an different effect on the regression line.
The indicator variable should be added to the model. We may then check whether the interaction
term is significant with a t-test.

Model Selection

If we have n predictors for n observations, then we get a perfect fit since our projection space can be
the whole plane. We cannot just keep adding variables to our model, since we can overfit on the test
set. We now move to prediction and predictive modeling; the first step to avoid overfitting is through
model selection.2

As we saw in multicolinearity, it is difficult to decide which predictors to include in a model. This
general process is model selection, also called variable selection. What makes a model ‘best’ de-
pends on the purpose of the model; prediction, interpretation, etc. If interpretability is best, predic-
tion accuracy is secondary, and fewer significant variables are best. For prediction, adding variables
is important; more predictors lead to predictions with lower bias with larger variance. We consider
some criteria for choosing possible subsets of p predictors.

Adjusted R 2

Recall that as you increase the number of predictors, then the multiple coefficient of determination
R 2 also increases. We therefore choose the smallest model that maximizes R 2

a d j , but this may overfit
and should be used with caution.

2At the most basic level, linear models are a form of machine learning. Once we ‘learn’ model parameters, we can
predict Y for a new dataset.

29



STA302

Akaike’s Information Criterion

Definition 14. Akaike’s infromation criterion is given by

−2
�

ℓ(β̂ ,σ̂2)− (p +2)
�

where ℓ is the log likelihood of the model.

A large ℓ will decrease the AIC, but too many parameters increase the AIC. We want to choose the
model with the lowest AIC. Rewriting, we see the relationship

ℓ=
n

2
log(2πσ2)−

1

2σ2
RSS =⇒ AI C ∝ n log

�

RSS

n

�

+2p

Corrected Akaike’s Information Criterion

AIC has the tendency of overfitting or some situations, particularly when the penalty p + 2 or 2p is
not strong enough. This happens with small samples or the number of parameters is a large fraction
of the sample size. In this case, we use the following metric

Definition 15. The corrected AIC is written

AI CC = AI C +
2(p +2)(p +3)

n −p −1

and is preferred to the AIC when
n

p +2
≤ 40.

The ‘best’ model is also the one with the lowest AI CC .

Bayesian Information Criterion

Definition 16. The Bayesian Information Criterion is written

B I C =−2ℓ+ (p +2) log(n )

This penalizes parameters more than AI C , and therefore prefers simpler models than AIC. It can also
be simplified as

B I C ∝ n log
�

RSS

n

�

+ (p +2) log(n )

The model with lowest B I C is preferred.

Example 13. From the lecture slides, we fit models with various predictors, and notice that a partic-
ular subset has lowest AI C , AI Cc , B I C and high R 2

a d j = 93%, so we use this model.

Stepwise Variable Selection

For n possible predictors, there are 2n possible models, so we cannot practically try all possible com-
binations. We use forward stepwise selection: we try the SLR Y ∼ X i , and choose the most significant
variable. Then we add less and less significant variables X j in Y ∼ X i , X j , until B I C stops decreasing.
Similarly, in backward stepwise selection we can delete predictors one at a time from Y ∼ X1, . . . , Xp

30



STA302

until B I C is minimized.

Both ways are equivalent to choosing the predictor with the lowest p -value. Adding variables with
low p -value increases probability of type I error, but removing increases type II error. Type II error
is ‘less controversial’ than type I, so this method is preferred. Ideally, both forwards and backwards
addition will give the same model, but in practice this often does not happen. To do the full form of
stepwise variable selection, we go both back and forth, adding and removing variables. Diagnostics
after stepwise selection should also be done, and to note how much they change in comparison to
before selection, but do not need to be published.

While these are quite helpful, the estimated coefficients that we get from a post-selection model will
actually be biased estimators. This can result in enlarged test statistics t , F that are larger than they
should be. We need to determine whether a model is reasonable for prediction purposes, that is
validate it.

Bias-Variance Decomposition

So far we discussed inference: estimating true population relationships, and prediction: how well the
fitted model predicts new data. Prediction is the basis of machine learning.

In ML, the bias-variance tradeoff is important. We first discuss the concept of learning and testing
datasets. The training dataset is used for model fitting, but the testing dataset is used to check pre-
dictions. Training and and testing sets must be independent; samples must be partitioned between
the two. Overfitting to training data occurs when a model performs much worse on the test data.

Definition 17. Suppose we want to predict an unobserved y0 at the test point x0. Let y0 = f (x0) be
the true, possibly non-linear, relationship, and our linear prediction be denoted ŷ0. Then the mean
squared error is given by

M S E (x0) = Eτ[ f (x0)− ŷ0]
2 = Eτ[ ŷ0−Eτ( ŷ0)]

2+ [Eτ( ŷ0)− f (x0)]
2 =V ( ŷ0) + [Eτ( ŷ0)− f (x0)]

2

where τ is the conditional training data, and the second term is the squared bias.

In machine learning, the mean squared error is a commonly used loss function, measuring the de-
viation of prediction from training data. This decomposition becomes very useful in this context.
Minimizing MSE minimizes bias or variance or both for ŷ0 given training set τ. Bias indicates how
accurate predictions are, and variance gives how much predictions change from sample to sample.
L.S. estimates are unbiased for the true model, but the variance can be very large when there are lots
of predictors for limited observations.

Shrinkage Methods

Recall the purpose of model selection. When there are too many variables prediction variance in-
creases, and interpretability suffers. We discussed stepwise variable selection, but this does not work
when n ≤ p .

One idea is to apply some constraint that shrinks less important parameter estimates to 0. Ridge
regression shrinks the coefficients by imposing a penalty on their size, but does not make them 0,
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and is not used for variable selection. In ridge regression,

β̂ = arg min
β

(

n
∑

i

 

yi −β0−
p
∑

j=1

xi , jβ j

!

+λ
p
∑

j=1

β 2
j

)

which is equivalent to

arg min
β

n
∑

i

 

yi −β0−
p
∑

j=1

xi , jβ j

!

and




β̂






2

2
≤ t , t ∈R

Ridge regression is used to estimate coefficients of models when the predictors are highly corelated.
The additional penalty on the model adds a degree of bias, but reduces the high variance caused by
multicolinearity: part of the bias-variance tradeoff. In MLR, we write

RSS (λ) = (Y −X β )′(Y −X β ) +λβ ′β

and minimizing the RSS produces
β̂ = (X ′X +λI )−1X ′Y

An important method for variable selection is a similar minimization subject to the LASSO: Least
Absolute Shrinkage and Selection Operator:

β̂ = arg min
β

(

n
∑

i

 

yi −β0−
p
∑

j=1

xi , jβ j

!

+λ
p
∑

j=1

�

�β j

�

�

)

This has no closed form solution, and must be found numerically. The minimal β̂ gives values where
many β j are 0, and therefore less important, so we may remove the corresponding predictors. It is
equivalent to

arg min
β

n
∑

i

 

yi −β0−
p
∑

j=1

xi , jβ j

!

and




β̂






1
≤ t , t ∈R

Lasso only selects n variables, cannot select p ≥ n variables. Lasso can fail to do grouped selection
of predictors with multicolinearity to reduce variance, and instead just selects one: it cannot select
all of them, like ridge can.

Example 14. Choosing age categories, one particular category may be chosen, with predictor for
other categories being 0 due to LASSO shrinkage. However, we lose information, since other age
ranges may be associated with other variables.

We use a linear combination of shrinkage methods to fix this. A mixed regularization, the elastic
net penalty, was introduced using the strengths of both ridge and LASSO, with elastic net mixing
parameter α

λ

�

(1−α)
p
∑

i=1

β 2
i +α

p
∑

i=1

�

�βi

�

�

�

=λ
�

(1−α)




β






2

2
+α





β






1

�

In all cases, λ is chosen by cross validation, or can be chosen with the glmnet package in R.
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June 13: Lecture 9

The final lecture for the assignment. We discuss assignment after model validation, and revisit mul-
ticolinearity.

Model Validation

Model validation happens through analyzing how the model generalizes to test data. We discuss
whether we overfit to training data, and how the model performs with new data. One independent
test is often not enough to validate a model, since we may have leverage points or outliers. We need
many test sets, but this is often not possible. We have two goals:

1. Model selection: Estimating performances of different predictors to find the most predictive
ones

2. Model validation: Estimating the prediction error on new data

Example 15. If our sample is n = 100, we can partition the set into k = 10 groups. The first 9 datasets
may be used for model fitting, the 10th is used to check prediction error. Using every set of 10 data-
points as test set, but others as training set, we do cross-validation. This is 10 fold cross validation.

Definition 18. Choosing different partitions of data set as training data, and the rest as training data,
for different partitions, is cross validation.

Resampling methods allow us to classify or predict a response accurately, but we skip bootstrap for
now. Cross validation is important for the assignment!

Cross validation algorithm:

• Randomly split the data into k equal parts.

• Fit the model with k −1 training parts, predict the outcomes for the last test part.

• use all k parts as a test set.

• The prediction accuracy can be checked with mean absolute bias or mean squared error.

• The predictions an be plotted with observed values to check the accuracy of the estimates vi-
sually.

For cross validation, we will be using the ols code from rms package in R.

Definition 19. The estimator of the mean squared error is given by

M S E =

∑

(yi − ŷi )2

n

Example 16. In the slides, we construct model and do validation. We choose λ for regularization
using cross-validation. See this week’s R code.

33



STA302

Requirements for Assignment

Literature review/EDA, model fitting, diagnostics, variable selection. We only show the diagnostics
for the very last model. Show only the steps that matter in this assignment. Improperly captioned
and labelled tables lose marks: practice writing a real report.

Clarifications

• Issues may have started around variable transformations. Try showing sin−1(py ) is appropriate
for the binomial case, whenσ2∝ E (Y )(1−E (Y )).

• In the Box-Cox transformation we use the Newton-Raphson numerical method to obtain λ for
the most appropriate power transformation.

June 15: Lecture 10

Assignment Hints

When running vif in the project, we get a GVIF column. Recall when we calculate the variance infla-

tion factor, we define vif for X i as
1

1−R 2
i

where R 2
i is the coefficient of determination of X i ∼ X1, . . . , Xn .

The GVIF has the exact same interpretation of VIF, but for the general case with categorical predictors.

Note: LASSO in this case is bad, since it does not work well with many categorical variables.

Generalized and Weighted Least Squares

Inference for our least square estimates parameters for Y = X β + ε require the Gauss-Markov as-
sumption. The Gauss-Markov theorem assumes V (ε) = σ2I , which is a strong assumption. Instead
of this we assume

V (ε) =σ2V

where V is a cov. matrix, and has non-zero off diagonal elements. Note there is covariance between
εi ,ε j and variance is not the same for every ε j . In this case we cannot minimize (Y −X β )′(Y −X β ).
This will not provide the correct minimum since it assumes homoscedasticity. Instead, we minimize

arg min
β
(Y −X β )′V −1(Y −X β )

Since σ2V is a covariance matrix, it must be symmetric and positive definite. Since it is positive-
definite, there exists an n ×n symmetric matrix K so that K ′K = K K = V : it admits a square root.

Definition 20. Using K , the symmetric square root of the symmetric positive definite V satisfying
K ′K = K K =V , define

Z = K −1Y , B = K −1X , γ= K −1ε

where X , Y , ε are the usual MLR matrices. This gives the transformed relationship

Z = Bβ +γ
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Our next goal is to show that the transformed variables follow the Gauss-Markov assumptions! We
begin by showing γ∼N (0,σ2I ).

Proposition 18. E (γ) = 0

Proof. E (γ) = E (K −1ε) = K −1E (ε) = 0

Proposition 19. V (γ) =σ2I

Proof.

V (γ) = E
�

(γ−E (γ))(γ−E (γ))′
�

= E
�

γγ′
�

= K −1E (εε′)K −1 = K −1σ2V ′K −1 =σ2I

Theorem 4. γ∼N (0,σ2I ) follows from the above.

Note: In practical settings, the matrix V is very difficult to estimate.

Minimizing the RSS for the transformed variables with GM assumptions,

RSS (β ) = γ′γ= ε′V −1ε= (Y −X β )′V −1(Y −X β )

which gives β̂ = arg minβ (Y −X β )′V −1(Y −X β ).

Proposition 20. β̂ = (X ′V −1X )−1X ′V −1Y

Proof. Since Z = Bβ +γ follows the GM assumptions, we estimate β̂ for this model and change vari-
able.

β̂ = (B ′B )−1B ′Z = ((K −1X )′K −1X )−1(K −1X )′K −1Y

K −1 is symmetric, inverse of transpose is transpose of inverse, and (K −1)2 =V −1 (see Appendix).

= (X ′(K −1)2X )−1X ′(K −1)2Y

= β̂ = (X ′V −1X )−1X ′V −1Y

Proposition 21. V (β̂ ) =σ2(X ′V −1X )−1

Proof. Just expand.

Var(β̂ ) =Var((X ′V −1X )−1X ′V −1Y )

Recall for a matrix A, Var(AY ) = AV (Y )A′, so we use the same on the above.

= (X ′V −1X )−1X ′V −1Var(Y )V −1X (X ′V −1X )−1

= (X ′V −1X )−1X ′V −1σ2V V −1X (X ′V −1X )−1

=σ2(X ′V −1X )−1(X ′V −1X )(X ′V −1X )−1

=σ2(X ′V −1X )−1
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Now assume in the case of generalized least squares, the covariance terms between elements are zero
but variances are not equal. Then we may write

σ2V =









1
w1

0 . . . 0
0 1

w2
. . . 0

...
...

...
...

0 0 . . . 1
wn









=σ2W −1 =









σ2
1 0 . . . 0

0 σ2
2 . . . 0

...
...

...
...

0 0 . . . σ2
n









Definition 21. When Cov(εi ,ε j ) = 0, i ̸= j then writing σ2V = σ2W −1, we call W the weight matrix
written

W =









w1 0 . . . 0
0 w2 . . . 0
...

...
...

...
0 0 . . . wn









In the case whereσ2V =σ2W −1, we have the weighted least squares estimates

β̂W = (X
′W X )−1X ′W Y Var(β̂w ) =σ

2(X ′W X )−1

The weights of W are decided mostly from prior knowledge. When the true model is weighted, the
OLS estimates are unbiased but have larger variances.

Polynomial Regression

In linear regression, we mean linear with respect to β : linear in parameters. This makes sense from a
statistical point of view, since we minimize RSS with respect to β . The relationship between Y ∼ X
can be non-linear, as long as

Y =β0+β1φ1(X1) +β2φ2(X2) + . . .+βpφp (Xp )

for φi non-linear functions, but linear in β . We still use least squared estimates to estimates β , but
treat x̃2 =φ2(x2).

Example 17. Based on this equation, with one predictor x we can fit the model y =β0+β1 x+β2 x 2+ε.
Set x̃1 = x , x̃2 = x 2 and rewrite

y =β0+β1 x̃1+β2 x̃2+ε

Clearly Cov(x̃1, x2) ̸= 0, but we can use generalized least squares estimates for β1,β2.

Generalized Linear Model

We go deeper into GLM and GAM in STA303. Up to this point, we have considered Y to be a continu-
ous random variable. One of the most famous examples of a GAM is when Y ∈ {0, 1}, and our model
decides which value Y takes.

When Y is binary, we want to maximize the domain of X to give an estimate for the expectation of
Y . If Y ∈ {0, 1} and E (Y | X ) =β0+β1X , then

0< E (Y | X )< 1 =⇒ 0<β0+β1X < 1
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If we take
log(E (Y | X ))

as our response, then E (Y | X ) ∈ (0, 1) gives

−∞<β0+β1X < 0

The ratio

φ(E (Y | X )) = log
�

E (Y | X )
1−E (Y | X )

�

=β0+β1X

has a linear relationship with respect to the parameters, and is valid for all X , so that β0 +β1X ∈ R.
Calculating, we can find

E (Y | X ) =
exp(β0+β1X )

1+exp(β0+β1X )

where this is the cdf of the logistic distribution! This is logistic regression.

Definition 22. A generalized linear model is a model so that there exists a link functionφ where

φ(E (Y | X ))

is a linear function of parameters (βi )0≤i≤p . In a linear model,φ = I .

Definition 23. Logistic regression is a GLM with one non-constant predictor so that the link function

φ(E (Y | X )) = log
�

E (Y | X )
1−E (Y | X )

�

Consider the logistic model, but when X is a binary predictor. Denote

E (Y | X = 0) = p0, and E (Y | X = 1) = p1

Then log( p1
1−p1
) =β0+β1, log( p0

1−p0
) =β0. Then writing the odds ratio Ω=

p1/(1−p1)
p0/(1−p0)

log
�

p1/(1−p1)
p0/(1−p0)

�

= log
�

p1

1−p1

�

− log
�

p0

1−p0

�

=β1

Then exp(β1) = Ω. If there are more predictors X2, . . . , Xp , then this is true while other predictors are
held constant. If we have a true model of

Y =β0+β1X +β2Z +β1,2X Z

where X , Z are binary predictors with interaction then

Z = 0 =⇒ ΩX = exp(β1)
Z = 1 =⇒ ΩX = exp(β1+β1,2) = exp(β1) ·exp(β1,2)

β1,2 indicates how much the odds ratio changes with the interaction of Z . This is referred to as the
ratio of odds ratios.
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Generalized Additive Model

In GLM we used a transformation of E (Y | X ) to linearity, but this can be difficult to find many pre-
dictors. In machine learning, often Y = f (X1, . . . , Xp ) +ε is used, but this is not interpretable. A good
compromise is the additive model.

Definition 24. An additive model is a model so that

Y =β0+
p
∑

j=1

f j (X j ) +ε.

where f j is any function so that Y remains a random variable.

These models are more flexible than the linear models, but still interpretable since f j give somewhat
of a marginal relationship between X and Y . Best transformations are determined simultaneously
and without parametric assumptions for their form. In its basic form, the additive model will do
poorly when interactions exist, and we may consider f j k (X j , Xk ) to fix these. Categorical variables
can be accomodated using the regression approach:

Y =β0+
p
∑

j=1

f j (X j ) +Z γ+ε.

where Z is the design matrix for the categorical variables, and γ are the regression parameters for
them.

Definition 25. A generalized additive model is a model with a link functionφ where

φ(E (Y | X )) =β0+
p
∑

j=1

f j (X j ) +Z γ+ε

is an additive model of f j .

Some examples of generalized additive models are

• Regression splines: They divide the range of X into k distinct regions, and within these regions
a distinct polynomial is fit to the data. The polynomials have smooth transitions between the
regions. These can produce an extremely flexibly fit: it is an extension of stepwise and polyno-
mials functions.

• Smoothing splines: Similar to regression splines but arise in slightly different situation. These
result from minimizing a residual sum of squares criterion subject to a smoothness penalty.
Similar to shrinkage, but with different penalty.

• Local regression: Regions the space is divided in can overlap, and transition in a smooth way.

Take STA303!
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June 20: Lecture 11

Final exam: Friday, June 24 9:00am-12:00pm

Clarifications

1. In GLS, we have β̂ = (X ′V −1X )−1X ′V −1Y (variance proof)

2. add why X ′V −1X is symmetric

3. both OLS and GLS estimators are unbiased

Principal Component Analysis

Suppose there exists multicolinearity between predictors. Then V (β̂ ) becomes large and our confi-
dence intervals are unreliable. After checking VIF, it is not straightforward to choose which predictors
to remove.

For prediction, when multicolinearity exists, we can use principal components regression to get good
predictions. A PCA is concerned with explaining the variance covariance structure of a set of variables
through a few linear combinations. It can explain most of the variation in this way. If we have p highly
corelated predictors, and we can explain this variablility with k < p principal components, we may
run the regression on the components and avoid multicolinearity issues. This often reveals underly-
ing relationships in predictors.

Suppose we have a predictor vector, given by X = (X1, . . . , Xp ) and assume they have a multivariate
normal distribution with covariance matrix Σ, whereσi , j =Cov(X i , X j ). Since Σ is a p ×p symmetric
positive definite matrix, by the real spectral theorem it has p orthogonal eigenvectors, and eigenval-
ues λ1 ≥ . . .≥λp ≥ 0. Then let

Z =





Z1
...

Zp



= A





X1
...

Xp



= A ·X

for a linear transformation A. Where we write Z1 = α′1X for some vector α′1. Recall that eigenvectors
corresponding to distinct eigenvalues of a symmetric matrix are orthogonal.

Definition 26. Let Σ be a covariance matrix with the random vector X , with eigenvector eigenvalue
pairs (λ1, t1), . . . , (λp , tp ). Then we define the principal components as

Zi = t T
i X

and have properties V (Zi ) = t ′iσti and Cov(Zi , Z j ) = 0. In other words, we change basis to the eigen-
vectors of the covariance matrix and get nice properties.

Reminder: Use characteristic polynomial to find eigenvalues.

Now, assumeΣ= (σi , j )1≤i , j≤p is a covariance matrix. We know tr(Σ) =
∑

i σi ,i . We can also diagonalize

Σ= T ΛT ′
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where T ′ = (t1, . . . , tp ) is the change of basis to the principal components, andΛ is the diagonal matrix
of eigenvalues. Since trace is independent of basis,

tr(Σ) =
∑

i

λi

and
∑

V (X i ) =
∑

V (Zi ). Recall that our regression was defined Y = X β +ε. Transforming

Z = X T and α= T ′β

we may write Y = X T T ′β +ε= Zα+ε since T T ′ = I is the change of basis. Instead of calculating e.v.
pairs for Σ, we do it for X ′X so

X ′X = T ΛT ′ =⇒ Z ′Z = T ′X ′X T = T ′T ΛT ′T =Λ

We can estimate
α̂= (Z ′Z )−1Z ′Y =Λ−1Z ′Y and V (α̂) =σ2(Z ′Z )−1 =σ2Λ−1

Small eigenvalues of X ′X indicate that the variance of the corresponding regression coefficient will
be large. If all λi = 1 then the predictors are orthogonal, but if some λi = 0 then they are linearly
dependent. For the untransformed estimators,

Var(β̂ ) =Var(T α) = T λ−1T ′σ2

Multiplying, this implies

Var(β̂i ) = σ̂
2

p
∑

j=1

t 2
i , j

λ j

Example 18. We plot eigenvalues of the components against component number, and choose the
first components where the eigenvalues is decreasing rapidly: “find the elbow". We can then use
these as our predictors.

Confounding

Definition 27. Confounding is when in an assumed relationship Y ∼ X , there exists a third variable
Z , influencing both X , Y , so that there exists a spurious association between Y and X .

The presence of a confounding variable introduces bias in the marginal association between X and
Y .

Exam Hints

• go through all proofs, focus on proofs of shrinkage methods and V (ei )

• check all given variance stabilizing transformations: see practice final

• at least 2 questions exactly from the practice final

• might have quesitons similar to midterm

• applied questions will be calculating variances for β̂ j in general (see cov matrix )
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• working with models without intercept: trace becomes p not p +1 (lec 4 or 5) - this will help

• his favourite questions: slightly changing some information for a proof or a computation

• solve as many questions as possible from chapter 2, chapter 3 in montgomery, definitely check
later chapters

• 1 double sided cheat sheet, no full solutions on help sheet

• bring a calculator - gg

• question on multicolinearity, aic bic, probably dffits dfbetas. be able to write the likelihood of
normal distribution, RSS likelihood

• box-cox perhaps

• 8 questions

• no glm, pca and such

Fin
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